Dynamic Properties Research Lab

  • Home
  • Publications
  • Facilities
    • Computational Facilities
    • Hopkinson Bar Facility
    • Gas Gun
  • Research
    • Granular Materials
    • Naval Structural Steels
    • Ceramic Composites
    • PZT Ceramics
    • Structural Composites
    • Zinc Oxide Nanobelts
    • Shape Memory Effect
    • Fracture in Ceramics
    • Polymer Bonded Composites
  • Job Oppurtunities
  • People
    • Dr. Min Zhou
    • Current Members
  • Former Members
  • Contact Us

Zinc Oxide Nanobelts

Thermomechanical Behavior of Zinc Oxide Nanobelts 

The current research focuses on characterizing the thermo-mechanical response of zinc oxide (ZnO) nanowires and nanobelts which are a new class of one-dimensional (1D) nanostructures. Recently fabricated through vapor-solid deposition techniques, these nanostructures have potential applications as functional nanocomponents such as catalysts, chemical & biomedical sensors, resonators, transparent conductors, and nano-electronic/photonic interconnects in nano-electro-mechanical systems (NEMS). The motivation for this work stems from the dearth of information regarding the thermo-mechanical responses of these nanostructures essential for their incorporation in nanosystems and the lack of nanoscale experimental setups for such characterizations. In the present work, an atomistic framework has been developed to extract the coupled thermo-mechanical behavior of the ZnO nanostructures. Key considerations are the effects of size and temperature on the elastic modulus, tensile strength and thermal conductivity. The surface dominance of mechanical (effect of surface stress) and thermal (effect of surface scattering of phonons) behaviors arising from the high surface-to-volume ratio at the nanoscale are analyzed. Novel phase transformations observed in nanowires under tensile loading are characterized and related effect on the mechanical (elastic moduli, yield and fracture strength) and thermal properties (specific heat and thermal conductivity)are charcterized. Such size dependency of properties at the nanoscale and the tensile-stress-induced phase transformations significantly alter the responses of the nanowires as compared to their bulk counterparts and offer potentials for novel applications in NEMS that rely on thermomechanical responses. Quantification of this phenomenon should provide data and criteria for the design and fabrication of a range of building blocks for nanoscale devices.

figure-nano

             FIGURE 1. (a) unit cell of ZnO, (b) orientations of nanobelts, and (c) loading scheme

Papers:

  • A.J. Kulkarni, M. Zhou, Size-dependent thermal conductivity of zinc oxide nanobelts, Applied Physics Letters ; 88, 141921 2006; Download a PDF copy
  • A.J. Kulkarni, M. Zhou, Surface-effects-dominated mechanical and thermal responses of zinc oxide nanobelts, Acta Mechanica Sinica; 22, 217, 2006; Download a PDF copy
  • A. J. Kulkarni, M. Zhou, and F. J. Ke, Orientation and Size Dependence of the Elastic Properties of Zinc Oxide Nanobelts, Nanotechnology; 16(10), 2005; Download a PDF copy

Quasistatic tensile loading of [2-1-10] orientaion nanobelts

Quasistatic tensile loading of [01-10] orientation nanobelts

Quasistatic tensile loading of [0001] orientaion nanobelts

Reversible structural transformation in [01-10] orientation nanobelts

Copyright © 2025 · Agency Pro on Genesis Framework · WordPress · Log in