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Abstract—Shear band formation in materials with inhomogeneous and composite microstructiires
is influenced by factors that usually do not come into play in monolithic materials. Experiments
and calculations have shown that inhomogeneities in material properties enhance the localization
of deformation. This investigation concerns the propagation of shear bands in a two-phase tung-
sten composite under the conditions of nominally pure shear deformation. Finite element calcula-
tions are carried out to delineate the effects of different grain-matrix morphologies. In the
numerical models, the initiation of shear bands is triggered by a notch, simulating the effect of
defects such as microcracks and microvoids in materials. Calculations demonstrate that phase
morphology, particle size and the relative location of initiation site have significant influences on
the development of localized deformation. The work and energy evolutions are tracked for each
constituent phase in the microstructures. In addition, the exchange of thermal energy through heat
flow between the phases is analyzed. The results show that a strong correlation exists between the
course of shear band propagation and the thermomechanical coupling between microscopic pha-
ses. © 1998 Elsevier Science Ltd. All rights reserved

Key words: Shear localization, shear band propagation, tungsten composite, tungsten heavy alloy,
inhomogeneous materials.

I. INTRODUCTION

Shear band formation in materials with composite and inhomogeneous microstructures is
influenced by factors that usually do not come into play in monolithic materials. The
inherent heterogeneities in material properties promote nonuniform deformation in the
microscopic constituents, thus enhancing the tendency for localization through coupled
thermomechanical interactions, Zhou et al. (1994). For example, in the tungsten compo-
sites or tungsten heavy alloys analyzed by Lankford er al. (1991), Magness (1994),
Andrews et al. (1992), Weerasooriya et al. (1992) Yadav and Ramesh (1995) and Zhou et
al. (1997) nearly spherical tungsten particles are surrounded by a ductile matrix which is
an alloy of nickel, tungsten and iron or nickel and cobalt. The particles have higher flow
stresses, a higher density, a lower rate of strain hardening, a higher strain rate sensitivity, a
higher thermal conductivity, and a lower specific heat. The matrix has relatively lower flow
stresses, a lower density, a higher rate of strain hardening, a lower strain rate sensitivity,
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a lower thermal conductivity, and a higher specific heat. The different combinations of
thermomechanical properties constitute an environment for thermomechanical coupling
between the phases and provide a driving force for nonuniform deformation. The lower
flow stresses of the matrix allow it to deform at higher rates than the particles initially,
therefore generating heat through plastic dissipation. The higher thermal conductivity of
the particles allows them to absorb heat from the matrix, causing their temperatures to
increase and their flow stress to drop. This process enables the hard particles to deform
more than a monolithic material with the properties of the particles would under the same
loading conditions. On the other hand, the higher flow stresses of the particles allow the
matrix to deform more than a monolithic matrix material would under the same condi-
tions. This thermomechanical coupling due to inhomogeneous material properties causes
composite materials to be more susceptible to shear localization than its individual con-
stituents if they are deformed separately.

In addition to expediting the localization of deformation, the presence of hard and soft
microscopic phases can also impede the propagation of shear bands. By design, hard
particles are intended to be reinforcement against deformation and failure. The presence
of hard particles or grains can act as “road blocks” for growing shear bands. Such an

effect may be significant if they are located along the likely paths of propagating shear -

bands, requiring more external mechanical work to be supplied for further deformation.
The driving force for nonuniform deformation and the strengthening effect of hard par-
ticles represent competing influences on shear localization in an inhomogeneous material.
The former contributes to expedite localization and the latter acts to impede the growth of
shear bands.

This paper analyzes the initiation and growth of shear bands in a two-phase micro-
structure similar to those of the materials studied by Magness (1994), Andrews et al.

(1992), Weerasooriya et al. (1992) and Zhou and Clifton (1997). Finite element calcula- -

tions are carried out using microstructures with the actual phase morphologies of a
tungsten heavy alloy and several assumed particle—matrix distributions involving different
particle sizes. In addition to accounting for microstructure, the numerical model also
simulates the effect of microflaws, such as voids, microcracks, and interface debonding, by
considering a'small notch in the material. This notch serves as a trigger for the initiation
and propagation of shear localization. The width of the notch is small compared with the
width of the shear bands and the grain size. In addition, the same notch geometry is used
for all the microstructures analyzed. Under such conditions, it is assumed that qualitative
features of shear band initiation from microflaws can be demonstrated. However, rather
than focusing on how flaws trigger the onset of shear localization, the analysis reported

here mainly concerns the interaction between shear bands and microscopic phases after -

the bands initiate. The objective is to characterize the influence of different micro-
structural phase morphologies in composite materials on the growth of shear bands.

II. FRAMEWORK OF ANALYSIS
IL.1. Momentum and energy balance
A convected coordinate, Lagrangian formulation of the field equations is used as, for

example, in Lemonds and Needleman (1986), Needleman (1989) and Needleman and
Tvergaard (1991). The independent variables are the particle coordinates, &, in the initial
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Fig. 1. Material block with random phase distribution analyzed; the coordinate system and velocity boundary
conditions are also illustrated. This microstructure has a grain volume fraction of approximately 85% and a
matrix volume fraction of 15%.

stress free configuration (Fig. 1) and time, ¢#. A material point initially at x in the reference
configuration assumes a position X in the current configuration. The displacement vector u
and the deformation gradient tensor are defined by

0x

=X — F:—, - .- = s -
u=x-—X, % (D

The dynamic deformation of materials is a coupled thermomechanical process. The
mechanical part is governed by the balanced of momentum and the thermal part is gov-
erned by the balance of energy (heat equation). These two systems of equations are writ-
ten as the principle of virtual work

2
J T:48DdV = J f-aide—J p?—u-SﬁdV, (2)
v s y o
and the variational heat equation

J pc, T8TAV = J XT: D”STdV—i—J K(F‘I-F‘T-%)-nsTdS
¥ >

J (F s 8T> 87
v dx

where V7, S and p are the volume, surface and mass density, respectively, of the body in the
reference configuration. T = Jo = det|F|o is the Kirchhoff stress, with o the Cauchy
stress. fis the traction on a surface with normal n in the reference configuration, D denotes
the rate of deformation tensor, T is temperature, x denotes the fraction of plastic work
converted to heat, D” is the plastic part of D, ¢, is specific heat, £ is thermal conductivity, (')

€)
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denotes 8/az, ()' and ()~7 denote, respectively, inverse and inverse transpose. The dyadic
product A : B is 4YB;;. 3T, 8D and éu denote admissible variations in temperature, rate of
deformation and particle velocity, respectively. These two systems of equations are cou-
pled through the heat generation term in (3).

11.2. Constitutive relation

Under the conditions of small elastic strains, assuming that the thermoelastic coupling
is negligible and ignoring any temperature dependence of the elastic moduli, one can write
the incremental stress—deformation rate relation as

*=L:[D-D"-aTl], @)

where T is the Jaumann rate of Kirchhoff stress, L is the tensor of elastic moduli,  is the
coefficient of thermal expansion, I is the second order identity tensor. For isotropic,
thermoelastic response,

T 14w

L ﬁ’+1_f2v1®1]. G)

Here, I’ is the fourth order identity tensor, E is Young’s modulus, v is Poisson’s ratio and
A ® B denotes the tensor product.
For an isotropically hardening, viscoplastic solid, D? is given by

3e
W:iﬁ (6)

with € being the equivalent plastic strain rate and

1 s 3,

The thermoviscoplastic response of each of the constituent materials in the composite
microstructures is characterized by the following thermoviscoplastic relations
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In the above equations, € = f(; édr is the equivalent plastic strain, & is a reference strain
rate, o is the Mises equivalent stress, r and a are rate sensitivity parameters, respectively,
for strain rates below 1073s~! and above 5 x 10%s™!, oy is a reference stress, € is a refer-
ence strain, NV is a strain hardening exponent, Ty is a reference temperature, and g and Ty
are thermal softening parameters. Function g(€, T) represents the stress—strain relation at
a quasi-static strain rate of éy and at temperature T. At T = Ty, g(¢, To) = oo(1 + /&)™,
Function s(7) is introduced to model higher rates of thermal softening at higher tem-
peratures. T, is a threshold temperature for s(7) to become active, and T}, is the melting
temperature. The relations in (8) account for strain hardening, thermal softening, and
strain rate sensitivity. This particular form involving two strain rate functions (¢; and &)
is chosen based on experimental measurement of the shear stress—strain relations over the
strain rate range of 10~3 to 10° s~!. Specifically, ¢; describes the strain hardening behavior
in the strain rate range of 10~! to 10°s~! and ¢é; models the enhanced strain hardening
behavior between 10* and 10° s~!. The functional form used provides a smooth transition
of behavior between these two strain rate regions. Model parameters for the constituent
phases are determined using experimental data reported in Zhou et al. (1997) and are
listed in Table 1.

III. FINITE ELEMENT METHOD

Finite element discretization is based on triangular elements arranged in “crossed tri-
angle” quadrilaterals. Displacements and temperature are taken to vary linearly over the
triangular elements. When the finite element approximations of the displacement and
temperature fields are substituted into the momentum balance (3) and the energy balance
(4) relations, the resulting equations take the form,

#U
MZ=R ©)

Table 1. Material model parameters

Parameter Grains Matrix

é 1.0x104s~! 1.0x107%s-!
m 50 17

0o 730 MPa 100 MPa
ém 8.0%108 s~! 8.0x1010 g1
a 21 1

€ 1.83x10"5 3.92x 1074
N 0.05 ~-.0.20

B 0.85 0.85

To 293K 293K

T4 600K 600K

k 160 W(m.K)~! 100 W(m.K)~!
Cp 138J(kg. K)™! 382 J(kg.K)~!
X 0.9 0.9

) 19300kgm~3 9200kgm—3
E 4,00x10°MPa 2.55x10° MPa
v 0.29 0.29

« 53x1078K! 1.5x10-5K"1
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and
aT

ng—KT%-H, (10)

where U is the vector of nodal displacements, T is the vector of nodal temperatures, M, C
and K are, respectively, the mass, the heat capacitance and the heat conductance matrices,
and R and H are the mechanical and thermal force vectors.

A lumped mass matrix is used in (9), for reasons of efficiency and accuracy, Krieg and
Key (1973). Additionally, a lumped heat capacitance matrix is used in (10). In order to
verify the accuracy of the integration of (10) with a lumped capacitance matrix, numerical
results for a purely thermal problem involving non-uniform heat sources distributed on a
rectangular area were compared with an analytical solution and good agreement was found.

Equations (9) and (10) are decoupled and solved using a staggered scheme consisting of
alternating isothermally mechanical and pure thermal processes. For each time step, the
displacements and velocities are first obtained by integrating the equations of motion 9)
using an explicit integration method, the Newmark g-method, with 8 =0 and y =0.5,
Belytschko ez al. (1976). After the deformation field is obtained, T : D?, is calculated and
its contribution to the thermal force H is determined. The temperature rates and tem-
peratures are then obtained from (10). The rate tangent modulus expansion of Peirce ez al.
(1984) is used to update the stress tensor t. Time increments used in the calculation are
small fractions of the time it takes for the longitudinal stress wave to traverse the smallest
finite element in the more stiff material (the grains) in the microstructure. The increment
for each time step is adjusted using an empirical formula limiting the maximum changes in
equivalent stress, equivalent plastic strain and temperature during the time step.

IV. PROBLEM ANALYZED

The problem analyzed is iilustrated in Fig. 1. A block of material is assumed to contain
a notch 20 um in length and 2 um in width centered in the middle. This notch is a trigger
for localization, simulating the effect of a microcrack or a void in the material. Since shear
bands are expected to have widths of the order of 10~15 um, the dimensions of the speci-
men is chosen to be 100 umx4 um, sufficient for the analysis of shear band development
in such a microstructure. The mesh used has approximately 100x40 quadrilaterals or
100x40x4 triangular elements. The smallest element is at the notch tip where the defor-
mation is expected to be most intense. This element has a size of approximately 0.35 um.

The material is subjected to nominally pure shear deformation. This overall deforma-
tion is specified by the velocity histories at the top (82 = H) and the bottom (£ = —H)
surfaces. These velocity histories are

. , Vot/t,, 0<t<t,
W H 1) = il (E, —H, 1) = Vg,/ t>t, an

WELH ) =i (E, —H, 1) =0, 1>0;
where 1, is the risetime over which the boundary velocity is increased from 0 to Vy. In the

calculations, this risetime is chosen to be 0.1 us. After this time, the applied boundary
velocity is ¥y and the specimen is sheared at a constant, nominal rate of Vo/H.
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The material block shown is assumed to be one unit cell of a thin foil extending infi-
nitely and repeating itself periodically in the +&' and —¢&! directions. The periodicity
allows the following periodic boundary conditions to be applied at the left (¢! = —L) and
right (§! = L) boundaries,

u(—L, &, ¢
T —Lv g?,’ Z

In addition to the periodicity and in order to reduce the size of the numerical model, the
material block is chosen such that phase distributions in the left half (¢! < 0) and the right
half (¢! > 0) are antisymmetric to each other with respect to the origin (£',£2) = (0, 0).
This antisymmetry makes it possible to use only one half (e.g. the right half where £ > 0)
of the material block in the numerical calculations. To achieve this reduction, the follow-
ing antisymmetric boundary conditions are applied

u(L, &, 1),
T(L,&,1).

}; ~-H<g<H. (12

U(O, 527 t) = —llO, _523 1),
7(0,£, 1) = T(0, &, ¢

’

}; ~-H<& <H 13y

The lumped mass and capacitance matrices M and C in eqns (9) and (10) allow easy
implementation of the periodic boundary conditions (12) and the antisymmetric boundary
conditions (13). Specifically, for nodes 4 and 4’ on &' = 0 that satisfy (§*) ,= — (&) ,

_aﬂj_‘ — _ﬂ - R, ~R) s (14)
82 la ™ 82 la T (M) +M),’ /
and

et KT KT, o

O+ O

where ( ), and ( ), denote the components of the matrices associated with the two
nodes, respectively. For example, (M), and (M), are the nodal masses for 4 and 4/,
respectively, and (C), and (C), are the corresponding nodal capacitances for these two
nodes. The boundary conditions for nodes B and B’ on &' = L that satisfy (52) IS —(52) B
are implemented in the same manner,

The thermal boundary conditions at the upper and lower surfaces are such that no heat
exchange is allowed between the specimen and its surroundings. These conditions can be
written as

aT

&'ﬂ = 0, —L < él = Lv 52 =+ i,li . (16)

Initially at ¢ = 0, the specimen is at rest and stress-free. The initial temperature is at Tj.
The random phase distribution in Fig. 1 is from the actual microstructure of a tungsten
composite used in the study of Zhou and Clifton (1997). This microstructure has a grain
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volume fraction of approximately 85% and a matrix volume fraction of approximately
15%. In order to delineate the effect of different microstructural morphologies on the
initiation and propagation of shear bands, four other microstructures are also used in the
numerical analysis. These four microstructures consist of regular arrays of circular
(cylindrical in 3D) particles in a matrix and are shown in Fig. 2. The volume fraction for
the particles is 75.4% and the volume fraction for the matrix is 24.6% in these four
microstructures. Microstructures (a) and (b) have the same particle diameter of 10 um.
The only difference between these two cases is the relative locations of the notch and the
particles. In Fig. 2(a), the notch is located between two rows of particles, providing a
relatively soft path for the initiation and growth of a shear band from the notch tip. In
Fig. 2(b), the notch is at the center of a row of particles, the higher flow stresses of the
particle material pose a stronger resistance to deformation directly in front of a potential
shear band initiating from the notch tip. The notch-particle arrangements in Fig. 2(c) and
(d) are similar to that in Fig. 2(b). However, the particle size is successively reduced to
Sum in Fig. 2(c) and 2.5um Fig. 2(d), respectively. The different particle sizes in
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Fig. 2. Microstructures with regular arrays of circular grains used in the analysis: (a) notch located between two
rows of grains, grain diameter is 10 um; (b) notch centered on a row of grains, grain diameter is 10 um; (c) notch
centered on a row of grains, grain diameter is 5um; (b) notch centered on a row of grains, grain diameter is

2.5 um. All four microstructures have the same grain volume fraction of 75.4% and matrix volume fraction of
24.6%.
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Fig. 2(b)~(d) allow the effect of grain size on resistance to shear band propagation and
shear band path to be analyzed.

V. NUMERICAL RESULTS

In the numerical analysis carried out, the boundary velocity ¥, applied is 10 ms~!. This
corresponds to a nominal shear rate of y = Vy/H = 5 x 105 s~L.

V.1. Propagation of shear bands in microstructure with random phase distribution

Figure 3 shows the distributions of the equivalent plastic strain rate € at 0.2, 0.4 and
0.8 us after the beginning of deformation. For clear presentation of the data and visuali-
zation of the phases, the matrix and the grains are plotted separately. The plots show the
progression of deformation. The strain rate in the matrix is higher. The shear band tends
to go through the matrix between grains. The strain rate is usually higher for the parts of
the grains that are involved in the shear band. Although the shear band follows relatively
soft paths which are mostly between grains, it is possible for it to go through the middle of
a grain. Note that the shear band is completely inside a grain near the right edge of the
materials block, Fig. 3(c). The development of the shear band is at such a rate that by
0.6 us after the beginning of deformation, the shear band has propagated through the
whole ligament. The apparent width of the band is approximately 10 um. The notch
clearly represents the initiation site for the shear band, suggesting potential significance of
defects such as microcracks, voids and grain-matrix debonding in promoting shear failure
in these materials.

The distributions of temperature at the same times as those in Fig. 3 are shown in Fig. 4.
The temperature contours show more smooth variations of temperature between the
phases. The width of significant temperature rise, approximately 15 um, is larger than the
width of high strain rate which is approximately 10 um. At 0.8 us, the highest temperature
inside the shear band is approaches 650 K.

V.2. Thermal softening in shear bands

The distributions of the shear component o, of the Cauchy stress o in the initial Car-
tesian frame at 0.4, 0.6 and 0.8 us are shown in Fig. 5. Initially, the stress levels in front of
the notch tip are higher, causing the rate of deformation to be higher there. The higher
temperatures in this region cause the material to soften progressively. Clearly, this shear
stress decreases as the deformation continues in Fig. 6(a)-(c). The reduction in stress seen
here is the net decrease caused by thermal softening after rate sensitivity has been taken
into account. The stress levels in the matrix are lower than those in the grains. Thermal
softening occurs mainly in the grains for the time period shown.

V.3. Effect of material inhomogeneity

Figure 6 is a comparison of the distributions of € at 0.4 us for (a) a uniform material
with the properties of the matrix phase, (b) a uniform material with the properties of the
grains, (c) the microstructure with random phase distribution in Fig. 1, and (d) the
microstructure with circular grains in Fig. 2(a). The propagation of shear band is slower
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Fig. 3. The distributions of equivalent plastic strain rate at (a) 0.2 us, (b) 0.4 us, and (c) 0.8 us for the micro-
structure in Fig. 1. The nominal shearing rate is 5x10% s~1,
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in the matrix material than that in the grain material. The difference is caused by the fact
that the matrix has a higher rate of strain hardening and higher specific heat than the
grain material. For the same amount of overall deformation (#=0.4x 1075,
§=0.2,y=5x10° s71), the shear band extension is larger in the grain material, indi-
cating the strong influence of strain hardening and thermal softening on the resistance to
shear band propagation. Shear band propagation in the microstructure with random
grain-matrix morphology is faster than in either the pure matrix material or in the grain
material Fig. 6(c). Clearly, the material inhomogeneities provide an additional driving
force for the growth of shear bands, allowing faster propagation. Phase morphology has a
direct impact on the growth of shear bands. In Fig. 6(d), the shear deformation is more
concentrated in the matrix path between two rows of grains. The propagation of shear
band in this microstructure is faster than the propagation in all other cases in Fig. 6. This
band forms almost uniformly in the &' direction, not strongly influenced by the presence
of the notch. This indicates that the weakening caused by the regular grain arrangement
has a stronger influence on the development of shear bands than the weakening caused by
a defect such as the notch. It therefore appears that the reductions in shear failure resis-
tance of the composite materials caused by defects and by phase morphology can both be
dominant.

V.4. Effect of phase morphology

Figure 7 compares the deformed configurations at 0.8 us of the four microstructures in
Fig. 2. The contours show the distributions of the equivalent plastic strain rate é. In
Fig. 7(a), the location of the notch between two rows of hard grains presents a soft path
for the growth of the shear band. Indeed, the shear band forms rather uniformly, almost
independently of the notch. The placement of a row of hard grains in front of the notch
(Fig. 7(b)) poses a significant impediment to the propagation of the shear band. The grain
at the notch tip is severely deformed whereas only nominal deformation is seen for the
grains behind it. Two bands of slightly higher rates of deformation are seen above and
below this row of grains, indicating the growth of the shear band away from the initial
notch line into the relatively soft paths for shear deformation between rows of grains. The
dramatically different results in Fig. 7(a) and (b) demonstrate that phase morphology and
arrangement can have a significant impact on the propagation of shear bands. Indeed, the
distributions of € in Fig. 7(a) and (b) show that when the shear band initiation site (the
notch) is moved relative to the phases, shear band morphology may undergo significant
change. Clearly, hard grains can act as significant obstacles to the development of locali-
zation. In this case, the change resulted in the simultaneous development of two shear
bands parallel to the direction of shear. The results in Fig. 7(c) and (d) indicate that
reducing the size of hard particles makes it easier for shear band to turn into relatively
weak regions. The region in front of the notch tip in Fig. 7(c) has two shear bands, one
above the notch line and one below the notch line. The shear band in Fig. 7(d) consists of
4-5 subbands of higher rates of deformation. Note that the grain size in Fig. 7(d) of
2.5 um is significantly smaller than the shear band characteristic width of approximately
10 um. Therefore, the small grain size makes the material effectively less resistant to
shear deformation compared with the microstructure in Fig. 2(b). Instead of concentrat-
ing in the matrix as in Fig. 7(a), more deformation is seen in the hard particles. The extent
of shear band development in these microstructures can be better seen through the
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temperature distributions shown in Fig. 8. The fast localization in Fig. 7(a) corresponds to
nominally uniform high temperatures along the direction of shear. The successive reduc-
tion of grain size in the microstructures of Figs 2(b)-(d) increases the temperature in front
of the notch tip, confirming the softening effect of smaller grains on resistance to shear
band propagation seen in Fig. 7.

VI. DISCUSSION

VI1.1. Stress-strain curves

The nominal shear stress-strain curves for the five composite microstructures and the
two monolithic cases (one for the matrix material and one for the grain material) con-
sidered are summarized in Fig. 8. The stress shown is the average value of o, along the
lower side of the material block. This stress is used as a measure of the overall stress-car-
rying capacity of the composite materials in the discussion that follows. The curves for the
matrix and the grain materials indicate that the grains have higher strength than the
matrix. The curves for the composite microstructures all fall between the curves for the
grain material and the matrix material. The formation of shear band has a clear influence
on the stress-strain relations. Stress levels for the microstructure in Fig. 1 are higher than
those for the other composite microstructures at the same levels of strain. This micro-
structure has the highest stress-carrying capacity due to its higher grain volume fraction
(85% versus 75.4% for the others). However, it poses the least resistance to shear band
propagation as indicated by its higher rate of softening as strain increases. This is con-
sistent with what is seen in Figs 4-8. The microstructure in Fig. 2(a) has the lowest stress—
strain.curve among the composites due to its low resistance to shear band growth. The
responses of the microstructures in Fig. 2(b)~(d) are similar to each other, with the smal-
lest grain size producing the weakest overall response. Also, smaller grains seem to cause
the stress carried by the materials to decrease more quickly as the shear band develops.

VI1.2. Energy dissipation in phases

The thermomechanical coupling between the constituent phases directly influences the
deformation and the evolution of the load-carrying capacity of the composite materials.
Energy evolution in the individual phases provides a perspective on the progression of
deformation. The work-energy relation for dynamic deformation is

14 4
J J f-ﬁdez:J J T:DdVdr—}—J L iy, an
0JS 0JV Vz )

where P(z fo JsfudSds is the accumulated boundary work at time # W(f) =
oy Dd Vdr is the stress work and the last term in the equation is the kinetic energy
stored in the material. This identity specifies the balance between the mechanical work
done through the specimen boundary, the stress work and the kinetic energy in the spe-
cimen. The stress power consists of an elastic part, a plastic part and a thermal part, i.c.

;/

J TZDdV=J T:D"dV—l—J 't:D-”dV—l-J. T:D'dv. (18)
v v 14
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These three parts of W are denoted by W¢, WP and W/, respectively. It is assumed that
90% of the plastic dissipation is converted to heat (x = 0.9), Taylor et al. (1934). The
energy balance is governed by the heat equation in the form

J pc,,TdV:J. XT:DdeV+J k(F“-F*T-E)-ndS. (19)
v v s 0x

The last term is identically zero in the current analysis due to the periodic boundary con-
dition (eqn (12)), the antisymmetric boundary condition (eqn (13)) and the adiabatic
boundary condition (eqn (16)). Consequently, no heat is gained or lost for the material
blocks considered. Heat exchange occurs only internally within each phase and between
the phases. In the discussion that follows, the heat exchange between the two phases are
considered. Since calculations have shown that the elastic stress work (or elastic energy
stored in the specimen) W*, the thermal stress work W', and the kinetic energy in the
specimen remain very small compared with the other terms and are therefore insignificant,
only boundary work P, stress work W, and the thermal energy stored in the specimen &
are shown. Except for the boundary work term which represents the amount of mechan-
ical work imparted into the whole specimen, the stress work and thermal energy are
measured separately for the grains and the matrix. Specifically, W, = [, [, T:
DAVdr, Wi = g [, ©: DAVAL, & = [, pey(T = Ty)dV, and &y = [, pc,(T— To)dV. In
the above expressions, ¥, and V,, are the volumes of grains and the matrix, respectively.
Note that W, ~ WE and W,, = W, i.e. stress work is mostly spent to cause plastic
deformation.

COMPARISON OF SHEAR STRESS-STRAIN CURVES
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Fig. 9. A comparison of the nominal shear stress—strain curves for the five microstructures in Figs 1 and 2. The
curves for two additional calculations are also shown. One uses the uniform properties of the grain material and
the other has the properties of the matrix material.
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The histories of these terms for four of the microstructures in Figs 1 and 2 are shown in
Fig. 10. The results shown are for (a) the microstructure in Fig. 1, (b) the microstructure
in Fig. 2(a), (c) the microstructure in Fig. 2(b), and (d) the microstructure in Fig. 2(c).
Under the same nominal shear rate, more mechanical work is required to deform the
material block in Fig. I than what is required to deform the microstructures in Fig. 2. This
is demonstrated in the higher values of boundary work P in Fig. 10(a) compared with
those in Figs 10(b) and (c). This is due to the higher flow stresses resulting from the higher
grain volume fraction of this microstructure. For shear bands to grow through the phases,
significant fractions of hard grains have to be deformed as well as the softer matrix.
Clearly, the random distribution of grain and matrix materials represents a weaker resis-
tance to the development of shear deformation by providing ample opportunities for
thermomechanical coupling between the phases. This weaker resistance to deformation is
already reflected in the distributions of ¢ for this microstructure shown in Fig. 3. It is
noted that the matrix phase in this microstructure has more thermal energy stored than
the total amount of plastic dissipation generated in it. The extra amount of thermal
energy comes from the grains through heat conduction. Clearly, this is a process in which
both phases are actively involved in the deformation, contributing to the dissipation of
energy.

In contrast, the regular arrangement of grains in the microstructures of Fig. 2(a) causes
preferential deformation in the matrix phase by providing readily identifiable soft paths
between rows of grains. Since more deformation is concentrated in the matrix, more heat
is generated there. Heat conduction allows part of the thermal energy to be diffused into
the grains which are at lower temperatures, Fig. 10(b). This flow of heat is the reason why
more thermal energy is stored in the grains than what is generated in them. The heat flow
into the grains causes additional thermal softening of the grains. Since the volume fraction
of the grains is higher than that of the matrix, the fact that comparable amounts of stress _
work are seen in these phases indicates that the deformation and plastic dissipation occur
predominately in the matrix phases. Although changing the relative locations of the notch
and the grains has a significant impact on the development and morphology of shear
localization, it does not have a significant influence on the work-energy relations in the
phases (Figs 10(b) and (c)), suggesting that the inherent partition of dissipation between
the phases remains similar. However, this redistribution of deformation does correspond
to a significant change in the nominal stress-strain curves Fig. 9.

In Figs 10(c) and (d), the reduction of grain diameter from 10 to 5um causes the
deformation to shift into the grains. This shift is due to the enhanced heat flow facilitated
by the smaller grain diameter. The enhancement in heat exchange and grain softening
expedite the growth of shear bands. The redistribution of deformation also causes two or
more shear bands to develop. These bands follow soft paths between rows of hard grains.
Furthermore, a faster decrease in the stress-carrying capacity is observed; see curves (c)
and (d) in Fig. 9.

VII. CONCLUDING REMARKS

The development of shear bands in composite and inhomogeneous materials depends
strongly on the thermomechanical coupling between the microscopic phases. The results
seent so far demonstrate that phase morphology also has a significant influence. Depend-
ing on the needs of specific applications, some phase morphologies may be more desirable
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than others. For example, grain arrangement can be used to provide preferential paths
and orientations for shear band development. This approach uses the anisotropic
response of a composite aggregate. Zhou (1998) analyzed the effects of several micro-
structural modifications on localization based on a phase morphology similar to that in
Fig. 1. The changes considered include addition of a new interfacial layer and the varia-
tion of phase properties. Combinations of those changes and appropriate phase arrange-
ment can be used to achieve certain desired performance. For example in structural
designs, materials with random phase distributions can be used to obtain materials with
weaker resistance to dynamic shear failure. Conversely, ordered phase arrangements can
be used to prevent shear localization or to induce it along specific orientations.

The analysis carried out here have considered relatively small samples of material
microstructures. Consequently, periodic boundary conditions have been used to reduce
the size of the numerical model. The size scale effect on localization in such materials have
not been fully analyzed. More realistic treatment of the problems requires substantially
more powerful computational resource than the Cray C90 computer used in this study.
Furthermore, extension to a three-dimensional framework of analysis as part of future
investigations may also yield new insight into the problems and render more realistic
consideration of microscopic inhomogeneities.
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