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SUMMARY

The cohesive finite element method (CFEM) allows explicit modelling of fracture processes. One
form of CFEM models integrates cohesive surfaces along all finite element boundaries, facilitating
the explicit resolution of arbitrary fracture paths and fracture patterns. This framework also permits
explicit account of arbitrary microstructures with multiple length scales, allowing the effects of material
heterogeneity, phase morphology, phase size and phase distribution to be quantified. However, use
of this form of CFEM with cohesive traction–separation laws with finite initial stiffness imposes
two competing requirements on the finite element size. On one hand, an upper bound is needed
to ensure that fields within crack-tip cohesive zones are accurately described. On the other hand,
a lower bound is also required to ensure that the discrete model closely approximates the physical
problem at hand. Both issues are analysed in this paper within the context of fracture in multi-phase
composite microstructures and a variable stiffness bilinear cohesive model. The resulting criterion for
solution convergence is given for meshes with uniform, cross-triangle elements. A series of calculations
is carried out to illustrate the issues discussed and to verify the criterion given. These simulations
concern dynamic crack growth in an Al2O3 ceramic and in an Al2O3/TiB2 ceramic composite
whose phases are modelled as being hyperelastic in constitutive behaviour. Copyright � 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The cohesive crack approach dates back to the work of Barenblatt [1] for brittle materi-
als and the work of Dugdale [2] for elastoplastic materials. The cohesive finite element
method (CFEM) provides a means for quantitative analysis of fracture behaviour through ex-
plicit simulation of fracture processes. It has been extensively used to model crack growth in

∗Correspondence to: Min Zhou, The George W. Woodruff School of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, GA 30332-0405, U.S.A.

†E-mail: min.zhou@me.gatech.edu

Contract/grant sponsor: Army Research Office; contract/grant number: DAAG55-98-1-0454
Contract/grant sponsor: National Science Foundation; contract/grant number: CMS9984298

Received 25 October 2003
Revised 29 December 2003

Copyright � 2004 John Wiley & Sons, Ltd. Accepted 18 May 2004



COHESIVE FINITE ELEMENT MODEL 1895

concrete, ceramics, polymers, composites, and metals. It has also been used to analyse fracture
along interfaces. A wide variety of issues have been addressed, including void nucleation (cf.
References [3–5]), quasi-static crack growth (cf. References [6–8]), dynamic fracture (cf. Refer-
ences [9–11]), interfacial fracture (cf. References [12–15]), dynamic fragmentation
(cf. References [16–19]), dynamic fracture in heterogeneous materials (cf. References [20, 21]),
impact-induced delamination in composites (cf. References [22–27]), fracture in polymers, duc-
tile tearing, viscoelastic fracture (cf. References [28–31]), response of ceramics under multi-axial
loading (cf. Reference [32]), ductile fracture (cf. References [33–35]), crack growth in function-
ally graded materials (cf. Reference [36]), and crack propagation in quasi-brittle materials like
concrete (cf. Reference [37]). Recent developments include virtual internal bond method [38]
for studying fracture at the nano scale, cf. Reference [39]. A discussion of recent improvements
in numerical implementation of cohesive zone models is given by de Borst [40] and Planas
et al. [41].

There are two approaches to analysing fracture using the CFEM when a crack path is
unknown in advance. One is to insert cohesive elements into the model as fracture develops (cf.
e.g. [42–44]). This approach is effective and extensively used and avoids the issue of cohesive-
surface-induced stiffness reduction of the overall model if the traction–separation relation has
finite initial stiffness. However, it requires the use of specific fracture initiation criteria that
are extrinsic to the constitutive model of the material. In addition, it may be computationally
intensive since it involves adaptive meshing at the tip of an advancing crack. The other approach
is to embed cohesive surfaces along all finite element boundaries as part of the physical
model (cf. References [9, 20, 21]). The additional discretization allows the cohesive surfaces
to permeate the whole microstructure as an intrinsic part of the material characterization. The
inclusion of cohesive surfaces along all element boundaries over an area in 2D or a volume
in 3D allows fracture paths and fracture patterns to be predicted. It assigns a much desired
attribute to micromechanical models—the ability to predict fracture pattern and fracture outcome
without computational checking at each time step as to which branch of material model to
follow in a specific material location. We follow the second approach in our analysis. The
finite element mesh used in our analysis has a uniform structure with ‘cross-triangle’ elements
of equal dimensions arranged in a quadrilateral pattern. This type of triangulation is used
since it gives the maximum flexibility for resolving crack extensions and arbitrary fracture
patterns. The uniform mesh used here avoids the problem of cracks not being able to follow
straight paths seen in irregular and non-uniform meshes (cf. Reference [45]). Such uniform
meshes are preferable for mixed mode fracture, as pointed out by Scheider and Brocks [33].
In addition, they also minimize mesh-induced dispersion effects in stress wave propagation, cf.
Reference [46].

Various traction–separation relations for cohesive surfaces have been proposed. Among them,
bilinear models such as those used by Camacho and Ortiz [16], Ortiz and Pandolfi [47], and
Espinosa et al. [25] and potential relations based on those used by Needleman [3], Tver-
gaard and Hutchinson [8] and Xu and Needleman [9] are popular, due to their simplicity and
straightforward physical background. Carpinteri et al. [48] recently proposed a fractal cohesive
crack model based on a renormalization group approach for predicting the size effect observed
in a wide range of experimental data. In this paper, we present a variable stiffness, bilinear
cohesive model for analysing fracture processes in multi-phase microstructures under conditions
of plane strain. The primary interest is to provide explicit account of both arbitrary fracture
patterns and arbitrary microstructural morphologies. The initial stiffness of the cohesive surfaces
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is characterized by an independent parameter, therefore the initially rigid bilinear relation law
(cf. e.g. Reference [16]) can be regarded as a special case of the model considered here. The
choice of a cohesive law which admits finite initial stiffness is based on several considerations.
First, it allows us to consider complicated multiple phase microstructures and still keep the
analysis tractable. Second, recent nanoscale simulations of interfacial separation have provided
evidence supporting the use of cohesive laws with finite initial stiffness, cf. Reference [49]. At
the structural or microscopic scales, the initial slope of the cohesive law may have to do with
microcrack behaviour at lower scales, cf. References [50, 51]. Recent asymptotic analyses of
mode-I fracture in Reference [52] by coarse graining inter-planar potentials and by determining
the corresponding macroscopic cohesive laws for interatomic planes suggest the need of making
sure that the overall compliance of the model not be overestimated when traction–separation
relations with finite or infinite initial stiffness values are contemplated. Also, it has been found
that initially rigid cohesive laws are associated with pathologies in the forms of division by
zero (due to the initial infinite slope) and non-convergence in time (due to discontinuities in
the traction–separation relation), cf. Reference [53].

For CFEM models with intrinsically embedded cohesive surfaces and cohesive laws with
finite initial stiffness, an upper bound on element size must be observed and the stiffness
reduction issue due to embedding of cohesive surfaces must be limited or eliminated, cf. Ref-
erences [46, 54]. Specifically, the element size must be small enough to accurately resolve
the stress distribution inside the cohesive zones at crack tips. On the other hand, the cohe-
sive surface contribution to stiffness reduction must be small, such that wave speed in the
solid is not affected due to the presence of cohesive surfaces. This imposes a lower bound
on the size of the elements. In cases where cohesive laws with initially rigid behaviour are
used, numerical analyses have been carried out to ascertain the upper limit on the size of
the finite element used such that below this limit results are reproducible for any finite el-
ement size, cf. e.g. Reference [22]. Results independent of mesh size have been obtained
when the mesh adequately resolves the cohesive zone, cf. References [16, 34]. The lower
bound for the finite element size is influenced by the initial stiffness of cohesive relation
used. Obviously, it is important to quantify the dependence of the lower bound on the initial
stiffness.

The first step in our analysis here involves analytical estimates of the upper and lower
bounds on element size through considerations of resolution for cohesive zone field and limit
for stiffness reduction. These estimates represent general considerations and are then specialized
to the case of an Al2O3 ceramic and an Al2O3/TiB2 ceramic composite system. The specialized
bounds are verified through numerical calculations and are shown to be more accurate and
specific for the materials analysed.

2. PROBLEM FORMULATION

A Lagrangian finite deformation formulation is used to account for the finite strains and
rotations in crack tip regions. The independent variables are the position of a material point
in the reference configuration x and time t . Relative to a fixed Cartesian frame xyz ∈ R3, a
material point initially at x occupies position x̄ in the current configuration. The displacement
and the deformation gradient are u = x̄ − x and F = �x̄/�x, respectively. The transient finite
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deformation kinetics is specified through the principle of virtual work as

∫
V

s : �F dV −
∫

Sint

T · �� dS =
∫

Sext

T · �u dS −
∫

V

�
�2u
�t2

· �u dV (1)

where s : �F = sij�Fji in Cartesian co-ordinates; s is the first Piola–Kirchoff stress; � is the
displacement jump across a pair of cohesive surfaces; V , Sext and Sint are the volume, external
surface area and internal cohesive surface area, respectively, of the body in the reference
configuration. The density of the material in the reference configuration is �. �F, ��, and
�u denote admissible variations in F, � and u, respectively. The traction vector T and the
surface normal n in the reference configuration are related through T = n · s. The volumetric
constitutive law is hyperelastic so that

S = �W

�E
(2)

where, S = s · F−T is the second Piola–Kirchoff stress tensor. W is the strain energy density,
taken to be

W = 1
2 E : L : E (3)

with

L = E

1 + �

(
II + �

1 − 2�
I ⊗ I

)
(4)

being the tensor of isotropic elastic moduli. E and � are Young’s modulus and Poisson’s ratio,
respectively. E is the Lagrangian strain given by

E = 1
2 (FT · F − I) (5)

In the above formulae, II is the fourth-order identity tensor, I is the second-order identity
tensor, I ⊗ I denotes the outer product of two second-order tensors, and ()T and ()−T denote
transpose and inverse transpose, respectively.

Note that cohesive traction T applied on material points P and P ′ coinciding at and oc-
cupying position x on cohesive surface S0 in the reference configuration is work-conjugate to
surface separation �. Reckoned in the reference configuration, the cohesive law is

T(x) = T[�(x)] (6)

and the work of separation under this traction at any stage of deformation is [47]

Wsep =
∫

S0

∫ �

0
T(x) · d� dS (7)

Implied here is the assumption that cohesive traction–separation relations are locally determined,
i.e. the cohesive traction at one point is fully determined by the separation at the point itself.
A review of various types of cohesive laws is given by, e.g. Reference [55].
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Figure 1. Irreversible bilinear cohesive law.

2.1. Bilinear law

Although the discussion here will focus on tensile loading, compression and contact can be
dealt with as well within this framework, cf. Reference [56]. The bilinear law used can be
regarded as a generalized version of those with irreversibility given by Camacho and Ortiz [16]
and Ortiz and Pandolfi [47]. However as in Reference [25], we have an additional parameter
to account for the finite initial stiffness of the cohesive surfaces. Further, the current law is
derived from a potential � which is a function of separation vector � through a state variable
defined as � = √

(�n/�nc)2 + (�t/�tc)2. This variable describes the effective instantaneous state
of mixed-mode separations. Here, �n = n · � and �t = t · � denote, respectively, the normal
and tangential components of �, with n and t being unit vectors normal and tangent to S0,
respectively. �nc is the critical normal separation at which the cohesive strength of an interface
vanishes under conditions of pure normal deformation (�t = 0). Similarly, �tc is the critical
tangential separation at which the cohesive strength of an interface vanishes under conditions
of pure shear deformation (�n = 0). � tracks instantaneous mixed-mode separations during
both loading and unloading. Clearly, � = 0 corresponds to � = 0 (undeformed state or fully
unloaded state) and � � 1 implies complete separation, i.e. total debonding of the cohesive
surface pair.

In order to account for the irreversibility of separations, a parameter � = max{�0, �ul} is
defined. As illustrated in Figure 1(a), �0 is the initial value of � which defines the stiffness of
the original undamaged cohesive surface and �ul is the hitherto maximum value of � at which
an unloading process was initiated. Note that �ul is associated with the onset of an unloading
event and is not necessarily the hitherto maximum value of �. Obviously, �ul represents the
(reduced) current stiffness of the cohesive surfaces after damage and unloading have occurred.
Also, one always has � < 1. While �0 is the characteristic value of effective separation � at
which the effective traction � (see below) for a cohesive surface pair reaches the strength Tmax
of the undamaged surface, �ul is the critical level of � at which � reaches the reduced strength
Tmax(1 − �)/(1 − �0) of the hitherto damaged cohesive surface pair.

The specific form for the potential is taken as

� = �(�, �) =




�0

(
1 − �

1 − �0

)(
�2

�

)
if 0 � � � �

�0

(
1 − �

1 − �0

)(
1 − (1 − �)2

1 − �

)
, if � < � � 1

(8)
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This relation allows the traction to be defined through

T = ��

��
(9)

yielding the normal and shear traction components as

Tn = �(�, �)
�n

��nc
and Tt = �(�, �)

��t

��tc
(10)

In the above expressions, � = �nc/�tc and

� =
√

(Tn)2 + (Tt/�)2 =




(
Tmax

1 − �

1 − �0

)
�

�
if 0 � � � �

(
Tmax

1 − �

1 − �0

)
1 − �

1 − �
if � < � � 1

0 if � > 1

(11)

For a surface that has previously been deformed to � = � and has experienced unloading from
this value of �, the work of separation for an arbitrary separation process is (see Equations (8)
and (9)) ∫ �c

0
T · d� = �(1, �) (12)

where �c is the critical separation under general mixed mode conditions at which � vanishes
and by definition �(�c) = 1. In particular, for pure normal separations �c = {�nc, 0} and
for pure tangential separations �c = {0, �tc}. Since the unloading and reloading along AP
(Figure 1(a)) are fully elastic, the amount of work required to fully separate a unit surface
area from the undamaged state is∫ �c

0
T · d� = �(1, �0) = �0 (13)

This constant can be calibrated through pure normal and pure shear separations, i.e.

�0 =
∫ �nc

0
Tn d�n =

∫ �0�nc

0

(
Tmax

�n

�0�nc

)
d�n +

∫ �nc

�0�nc

(
Tmax

1 − �n
�nc

1 − �0

)
d�n

=
∫ �tc

0
Tt d�t =

∫ �0�tc

0

(
Tmax

��t

�0�tc

)
d�t +

∫ �tc

�0�tc

(
�Tmax

1 − �t
�tc

1 − �0

)
d�t

= 1

2
T max

n �nc = 1

2
�T max

n �tc (14)

Apparently, Tmax = T max
n is the maximum cohesive traction under conditions of pure normal

separation.
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While the bilinear relationship between � and � embodied in the above formulation is
illustrated in Figure 1(a), the variation of � is shown in Figure 1(b). Overall, five parameters
are needed to specify the cohesive behaviour, including the maximum tensile strength Tmax,
the critical separations �nc and �tc, characteristic separation �0, and �. Note that only four of
these parameters are independent since � = �nc/�tc. The calibration of these parameters is an
important aspect in the implementation of the CFEM model. Tmax is commonly assumed to be
a fraction of the Young’s modulus, cf. e.g. Reference [9]. The critical separations �nc and �tc
are usually obtained by equating the area under the cohesive relation to the formation energy
per unit area of the corresponding fracture surface. In this regard, experimental efforts have
been reported, cf. e.g. References [51, 57]. The value of � is typically obtained from the ratio
between the tangential and normal energy release rates, cf. e.g. Reference [25]. In this paper,
the approach in Reference [9] is used.

Equation (11) describes a two-stage behaviour as illustrated in Figure 1. Between A and B
(0 � � � �0), separation occurs elastically and the cohesive energy stored (work done in causing
separation) is fully recoverable. Damage in the form of microcracks and other small-scale
defects does not occur. Between B and C (�0 � � � 1), material degradation causes progressive
reduction in the strength of the cohesive surfaces. This represents a phenomenological account
of the effects of microcracks and other defects not explicitly modelled in the CFEM framework.
Unloading from any point P follows path PA and subsequent reloading follows AP and then
PC. Part of the work expended on causing the separation in this regime is irrecoverable, as
indicated by the hysteresis loop ABP which implies dissipation during the softening process.
Correspondingly, there is a decrease in the maximum tensile strength of the cohesive surface.
This is reflected in the elastic reloading of the interface along AP and further softening along
path PC. To correctly account for this behaviour, it is necessary to record the value of �ul.
We must point out that the dependence of the damaged behaviour on previous deformation is
very weak and limited, only through � which tracks the hitherto largest extend of separation
from which unloading has occurred. Any other aspect of preceding loading–unloading cycles
does not in any way influence the deformation. This behaviour is similar to the Markov chain
(cf. e.g. Reference [58]) in stochastic analyses.

Since any unloading and reloading (along PA in Figure 1(a) or PA′ in Figure 1(b)) are
elastic, the amount of work that has been dissipated is

�d(�, �) =




0 if � � �0

�(�, �0) − �(�, �) = � − �0

1 − �0
�0 if �0 < � � �

�(�, �0) − �(�, �) = � − �0

1 − �0
�0 if � < � � 1

�0 if � > 1

(15)

Note here that �0 < � = max{�0, �ul} < 1 and that � never attains the value of 1. The dissipation
is uniquely defined and �d(�, �) is a monotonically increasing function. When full separation
is achieved, �d(1, �) = �0 · �d is partly converted into the surface energy and partly spent on
causing damage in the material adjacent to crack surfaces through microcrack formation not
explicitly modelled. A unique damage parameter can be defined to phenomenologically track the
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progressive softening of cohesive surfaces interspersed throughout the composite microstructure.
This parameter D is defined such that

D = �d

�0
(16)

Note that 0 �D � 1, with D = 0 indicating fully recoverable interfacial separation and D =
1 signifying complete separation or total fracture. In the numerical analysis carried out in
References [59, 60], D is used as a state variable quantifying the degree of the damage,
providing a phenomenological measure for failure analysis. The spatial and time variation of
D = D(x, t) allows the distribution and evolution of damage in various microstructures to be
analysed. Finally, it is important to remember that the development in this section is different
from the interfacial cohesive laws for fatigue by Nguyen et al. [61], as reloading here follows
the same path (AP in Figure 1(a)) as unloading.

A well-posed initial/boundary value problem consists of constitutive equations of materials,
appropriate field equations, initial and/or boundary conditions. In general, the field equations
appear as partial differential equations. Finite element discretization of field equations for the
model with cohesive surfaces leads to a system of differential algebraic equations that can be
solved numerically.

2.2. Finite element discretization

The finite element discretization of Equation (1) leads to a system of linear algebraic equations
of the form

M
�2U
�t2

= −R (17)

where, U is the vector of nodal displacements, M is the nodal mass matrix and R is the
nodal force vector consisting of contributions from both the bulk elements and the cohesive
surfaces, i.e. R = Rb + Rc, where Rb = ∫

V
BTs dV and Rc = ∫

Sint
NTT dS denote the force

vector contributions from bulk elements and cohesive surfaces, respectively. Here, N denotes
the finite element shape function and B is the spatial gradient of N. Krieg and Key [62] showed
that from the point of view of accuracy as well as computational efficiency a lumped mass
matrix is preferable for explicit time integration procedures. Therefore, a lumped mass matrix
M is used in Equation (17) instead of the consistent mass matrix. The explicit time-integration
scheme based on the Newmark �-method with � = 0 and 	 = 0.5 is employed to integrate
Equation (17), cf. Reference [63]. The displacements and velocities at tn+1 = tn + �tn are
obtained by integrating the equations of motion using Newmark �-method as

�2Un+1

�t2
= M−1R

�Un+1

�t
= �Un

�t
+ 1

2
�tn

(
�2Un+1

�t2
+ �2Un

�t2

)
(18)
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and

Un+1 = Un + �tn
�Un

�t
+ 1

2
(�tn)

2 �2Un

�t2

where (•)−1 denotes the matrix inverse. The time increment is taken to be �t . The magnitude of
�t is based on the Courant–Freidrichs–Lewy criterion and material-related numerical stability
considerations for explicit time integration. Another factor influencing the time step is the
cohesive separation process. Specifically in the current work, the time step �t also needs
to be small enough to ensure that the increment of the cohesive separation � (or ��) be
sufficiently small in each numerical step to avoid numerical instability. An empirical criterion
of �� < 0.05� is used, see Reference [21]. In the calculations carried out here for Al2O3,
the typical average time step is on the order of 1 ps which is approximately 1

200 of the time
it takes for the longitudinal wave to traverse the smallest bulk element. This time step value
is significantly smaller than that in FEM calculations without cohesive surfaces. Clearly, the
cohesive separation process brings about a significant increase in computational cost.

3. ELEMENT SIZE INDEPENDENCE: THEORETICAL BOUNDS

At least three primary length scales are operative in a CFEM model, including the specimen
dimension (L), grain/inclusion size (dg), and mesh size h. We assume that the length scales
associated with grains, inclusions, and specimen geometry constitute long range contributions
to deformation and their effect on the choice of local element size is relatively small. This
is a reasonable assumption since elements must be significantly smaller than most of these
length scales (e.g. h>L and h?dg) in order to obtain an accurate resolution of fields near
crack-tips. In addition to the usual requirements for elements in regular FEM models, two other
factors influence the element size independence and reproducibility of solutions in CFEM. The
first factor is the cohesive zone size (dz). The element size must be small enough (h>dz) to
accurately resolve the stress distribution in cohesive zones at crack tips. The cohesive zone
size is an inherent length scale determined by material properties. It is the smallest physical
length in most cases. The second factor results from the macroscopic stiffness reduction due
to cohesive separation along element boundaries if the initial stiffness of cohesive surfaces is
finite. The element size must be chosen to prevent excessive stiffness reduction or change in
the overall characteristics of CFEM models. The later issue is specific to CFEM models that
contain cohesive surfaces along all element boundaries and use cohesive laws with finite initial
stiffness. These two issues are addressed in the forthcoming sections to obtain a range of
element size that ensures the element size-independence and convergence of CFEM solutions.

3.1. Cohesive zone size

The high stress and strain gradients in crack tip regions necessitate the use of very fine meshes.
The fracture process zones involve large plastic deformations and/or microcrack/microvoid
formation. The cohesive zone model, introduced by Barenblatt [1] and Dugdale [2], characterizes
a fracture process zone as a cohesive zone in which cohesive traction is related to face
separation in the prospective fracture surfaces ahead of a crack tip. The relationship between the
cohesive force and separation varies, depending on mechanisms as well as material properties,
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cf. Reference [64]. The size of a cohesive zone is determined from a boundedness condition
for removing stress singularity at the crack tip. This size sets one of the length scales in
CFEM models. Clearly, finite element meshes must be fine enough to resolve details of the
deformation fields around crack tips and the traction distributions inside cohesive zones. Planas
and Elices [65] analysed the asymptotic growth of a cohesive crack in a strain softening material
with the objective of studying mode-I crack growth in structures. A zeroth-order analysis of the
near- and far-field of cohesive crack models predicted that the mode-I critical cohesive zone
size has the lower bound such that

dz � 


32
�2

c
E′

GIC
(19)

Here, E′ = E for plane stress and E′ = E/(1 − �2) for plane strain. GIC denotes the critical
mode-I strain energy release rate. �c is the crack tip opening displacement at the location where
the traction across a pair of cohesive surfaces becomes zero. The lower bound in Equation (19)
is applicable to an arbitrary cohesive law provided that the specimen size is very large compared
with the size of the cohesive zone. For Dugdale type cohesive laws which assume that the
cohesive stress Tmax is a constant equal to the yield stress of the material, the cohesive zone
size for mode-I under plane strain conditions is Reference [64]

dz = 


8

E

1 − �2

GIC

T2
max

(20)

For cracks with cohesive relations that can be derived from a potential such as the one in
Equation (8), Reference [66], the cohesive zone size can be further written as

dz = 9


32

E

(1 − �2)

�0

T2
max

(21)

Camacho and Ortiz [16] used Equation (20) in their analysis on element size which concerns
mode-I crack propagation. Since we focus on mixed mode conditions, Equation (21) is more
appropriate for the analysis here. We require that the characteristic element size satisfy h>dz.

3.2. Cohesive surface induced stiffness reduction

Cohesive surfaces contribute to the overall deformation of the specimen. For CFEM models that
include cohesive surfaces along all element boundaries as an intrinsic component, the density
of the cohesive surfaces (cohesive surfaces area per unit volume) increases as elements are
refined. The increase in cohesive surface density causes the overall deformation to increase
without an increase in applied loading if the initial stiffness of cohesive surfaces is finite. This
increase in compliance or decrease in stiffness of the overall model represents a change in
the property of the model. It causes the solution to diverge due to the changing characteristics
of the model. The effect of this issue is negligible when cohesive surfaces are only specified
along a potential single crack path such as the case in Reference [67] or if the initial stiffness
of cohesive surfaces is infinite. The effects of this issue on the solution must be minimized.
Several methods can be used to achieve this objective. For example, the stiffness of the bulk
elements can be increased to compensate for the stiffness reduction due to interfacial separation.
Another approach is to limit the density of the cohesive surfaces in a model. This requires that
a lower limit be set for the finite element size. The effects of both approaches are discussed
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iF

F

*F

Figure 2. A schematic illustration of deformation decomposition in CFEM.

in this paper and the criterion we develop here specifies the minimum allowable element size
as a function of a number of factors, including the attributes of the cohesive law and the
bulk constitutive law in the model. The minimum allowable element size also depends on
the geometry of the meshes used. Before an estimate of this lower limit can be obtained, an
analysis of the overall deformation accounting for both bulk straining and interfacial separation
is in order.

An illustration of the bulk element-cohesive interface model is shown Figure 2. For the
continuum represented by the aggregate of bulk elements and cohesive surfaces, the overall
macroscopic deformation gradient F comprises two parts which result from bulk material
deformation and cohesive surface separation, respectively. Specifically

F = F∗Fi (22)

where F is the overall macroscopic deformation gradient, F∗ accounts for the contribution from
bulk deformation within elements, and Fi accounts for the effect of separation along cohesive
surfaces. The overall strain E and the strain in the bulk elements E∗ are, respectively,

E = 1
2 (FTF − I)

and

E∗ = L−1 : S (23)

where, L−1 is the material compliance tensor and S is the second Piola–Kirchhoff stress tensor.
The deformation gradient accounting for cohesive separations can be expressed as

Fi = I + 1

V

∫
Sint

� ⊗ n dS (24)

where V is a representative volume over which the contribution of cohesive surfaces to defor-
mation is averaged. The above relation is a volume-averaged measure of the contribution of �
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to deformation gradient. This representation is obvious if one considers uniform deformation
with evenly spaced, parallel cohesive surfaces. The corresponding Lagrangian strain can be
expressed as

Ei = 1
2 (FiT

Fi − I) (25)

In order for the overall discrete model to approximate the original continuum, the contribution
to the overall strain by Fi must be small compared with the contribution by F∗, i.e.

‖Ei‖>‖E∗‖ (26)

where, ‖‖ denotes an appropriate norm. In a CFEM model, ‖Ei‖ varies with the geometric
size and arrangement of elements. Thus, estimates of ‖Ei‖ can only be obtained for specific
CFEM configurations. A relative increase in compliance can be defined as

R = ‖Ei‖
‖E∗‖ = ‖Ei‖

‖L−1 : S‖ = ‖L−1
eff : S − L−1 : S‖

‖L−1 : S‖ ≈ ‖L−1
eff − L−1‖
‖L−1‖ (27)

Leff is the tensor of effective moduli of the model with cohesive surfaces and can be written as

Leff = Eeff

1 + �

(
II + �eff

1 − 2�eff
I ⊗ I

)
(28)

Here, Eeff is the effective Young’s modulus and �eff is the effective Poisson’s ratio. Clearly, to
ensure that the overall response of a CFEM model remains substantially similar to that of the
original system, we must require that R>1. Fi and Ei are dependent on the size and shape
of the elements used. Since the calculations in this paper, in References [59, 60] use meshes
with ‘cross-triangle’ elements arranged in a quadrilateral pattern analyses here concern only
this type of element design. Although the relations so obtained may not be used directly for
meshes with other geometric designs, the general trend and the parameter dependence should
hold true in general.

The discrete approximation of a continuum with cohesive surfaces and bulk elements causes
the response of the element-interface aggregate to be anisotropic in general. However, since
the interest is to obtain a close approximation of the material behaviour we focus on the
effective properties of the cohesive surface and bulk element aggregate. Within the hyperelastic
constitutive framework of Equations (3) and (4), we surmise the existence of a relation among
the effective Young’s modulus Eeff , effective Poisson’s ratio �eff and effective shear modulus of
the form of Geff = {Eeff/2(1 + �eff)}. Under this condition, the effective properties of a CFEM
model are loading-mode dependent because of the discrete nature of the model and because
of the differing responses of cohesive surfaces to mode-I and mode-II loading. To account for
the differing responses to different stress states, deformations under three fundamental loading
modes (uniaxial tension, biaxial tension and pure shear) are analysed and the relative increase
in compliance R in each case is obtained. These three fundamental loading modes are chosen
such that they cover the complete range of loading modes consistent with two-dimensional
mixed mode fracture. The lower bound for element size is then determined by using the largest
R among the values obtained. It is important to note that such an analysis allows the basic
parametric dependence and the quantitative scale of stiffness changes to be characterized. The
analysis is not meant to produce absolute bounds for the relative increase in compliance, nor is
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such a pursuit necessary. To simplify the analysis, uniform stress field is assumed in all cases.
Also, plane stress/strain conditions are assumed to prevail. Derivations of the effective moduli
for the three loading modes considered are given in the appendix. The corresponding relative
increases in compliances are

R1 = 1/Eeff − 1/E′

1/E′ = E′

h

(
�0�tc

Tmax

)[(√
2 + 2

2

)
� +

√
2

2�

]

R2 = (1 − �eff)/Eeff − (1 − �)/E′

(1 − �)/E′ = E′

(1 − �)h

(
�0�tc

Tmax

)[√
2

�
+ �

]

and

R3 = 1/Geff − 1/G

1/G
= G

h

(
�0�tc

Tmax

)[
2

�
+ 2

√
2�

]
(29)

Here, h is the size of squares containing cross-triangle elements, see Figure 4. The largest
relative increase in compliance used to determine the lower bound for the element size is

R = max(R1, R2, R3) (30)

This value varies with �. Without losing generality in the following analysis, � = 1 is assumed,
yielding

R =
(

�0�tc

Tmax

)
E′(

√
2 + 1)

(1 − �)h
(31)

3.3. Bounds for element size

The two competing requirements for element size cannot be satisfied simultaneously for the
exponential cohesive law of Xu and Needleman [9], cf. Reference [46]. However, for bilinear
laws the analysis yields variable bounds since the finite initial stiffness of the cohesive surfaces
(as measured by �0 in a normalized sense) is an independent variable in the model.

First, the requirement that the finite element size is significantly smaller than the cohesive
zone size yields

E�0

hT 2
max
?

32(1 − �2)

9

(32)

Here, Equation (21) has been used to approximate cohesive zone size.
Second, the requirement that R>1 and Equation (31) yield

h?
(

�0�tc

Tmax

)
E′(

√
2 + 1)

(1 − �)
(33)
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In order for Equations (32) and (33) to be simultaneously satisfied, �0>1 is required. This
condition imposes an upper limit on the initial stiffness of cohesive surfaces. The allowable
range of element size can then be expressed as

9
E�0

32(1 − �2)T 2
max
?h?

(
�0�tc

Tmax

)
E′(

√
2 + 1)

(1 − �)
(34)

These requirements should be enforced in a local sense for each element, ensuring satisfactory
approximation of the system being analysed at any scale.

4. NUMERICAL CALCULATIONS AND DISCUSSIONS

Calculations are carried out to illustrate the application of Equation (34) and to develop a
more accurate estimate of the bounds for the conditions (mesh triangulation, material systems
and microstructural size scales) analysed in this paper. This numerical verification is also
motivated by the fact that the cohesive zone size estimate in Equation (21) is based on a
quasistatic solution and many CFEM simulations are dynamic. The calculations here use a
range of element size and are carried out for a centre-cracked specimen under tensile loading.
A homogeneous Al2O3 ceramic and a heterogeneous Al2O3/TiB2 ceramic composite are chosen
for the analysis. Figure 3 shows the specimen configuration used. One half of the specimen is
used in the calculations due to symmetry. The whole specimen has a height of 2H = 1.6 mm
and a width of 2W = 1.6 mm. The length of the initial crack is 2ai = 0.4 mm. The specimen
is stress free and at rest initially. Tensile loading is applied by imposing symmetric velocity
boundary conditions along the upper and lower edges of the specimen. Conditions of plain
strain are assumed to prevail. The finite element mesh is shown in Figure 4. The small region
in front of the crack tip contains very fine mesh in order to resolve the intensified stress field.

2W 

2H 
2a i

0V

0V

1ξ

2ξ

Figure 3. Specimen configuration for calculations.
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Figure 4. Finite element discretization.

Table I. Constitutive parameters for bulk and cohesive surfaces.

Density KIC E Tmax �nc, �tc �0
Compound (kg/m3) (Mpa

√
m) (GPa) � (GPa) (nm) (J/m2)

Al2O3 3990 4.0 340 0.23 0.5 100 25
TiB2 4520 7.2 500 0.12 1.0 100 50
Homogenized 4120 3.6 415 0.15 0.65 100 32.5
Al2O3/TiB2
Composite
Al2O3/TiB2 — — — — 0.5 100 25
Interface

In the case of the Al2O3/TiB2 ceramic composite, this region represents the microstructure
digitized from micrographs of actual materials. The two phases are identified and made dif-
ferent by their different material properties. Each element is either in Al2O3 or TiB2. This
numerical representation is obtained from digital micrographs of real materials which use pho-
tographic contrast to distinguish the phases. A uniform mesh is used in the simulations. For
the smaller (TiB2 particles) phase, the average number of elements in each particle is approx-
imately 25. The analyses carried out here are limited only to lengths of crack propagation
within this microstructural region. The material outside the microstructure window is assumed
to be homogeneous and assigned effective properties representative of those for the Al2O3
ceramic or the Al2O3/TiB2 ceramic composite, see Table I. Both regions are discretized in
the same manner, involving both bulk element and cohesive surface elements. For the results
discussed here, the imposed boundary velocity of V0 = 2 m/s is applied on top and bottom
edges with a linear ramp from zero to this maximum velocity in the first 0.01 �s of loading.
All other specimen surfaces have traction-free boundary conditions. Specifically, the loading
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conditions are

u̇2(�1, ±H, t) =



± t

0.01
V0, t < 0.01 �s

±V0 t > 0.01 �s
− W < �1 < W

T 1(�1, ±H, t) = 0, −W < �1 < W (35)

and

T 1(±W, �2, , t) = T 2(±W, �2, t) = 0, −H < �2 < H

This set of conditions represents the loading of the pre-crack by a tensile wave with stress
amplitude of 16.5 MPa (�cV0) and a linear ramp from zero to that value in 0.01 �s. The
material properties in Table I are consistent with those in Reference [68]. These values for the
cohesive energy per unit area (�0) and the maximum cohesive traction (Tmax) allow Equation
(34) to specialize to

32 �m?h?225�0 �m (36)

for the Al2O3 ceramic and

29 �m?h?186�0 �m (37)

for the Al2O3/TiB2 composite. Note that the limits involved here are based on approximate
analyses and are not exact. They can be specified more precisely through numerical simulations
of individual structures with desired levels of tolerance for error. During the calculations, the
time history of apparent crack length a (crack length projected on to the �1-axis, Figure 3)
is used as a measure for identifying the element size independence of solutions. Figure 5
shows contours of the Cauchy stress component �22 in the Al2O3 ceramic and the Al2O3/TiB2
composite at a time of t = 0.12 �s. These calculations are carried out with h = 2 �m and
�0 = 0.001 and are used to illustrate the types of the fracture processes we will deal with
in this paper. In the case of the homogeneous Al2O3 (Figure 5a), the crack grows straight in
the horizontal direction. The difference between the total crack (arc) length and the apparent
crack length is insignificant. Consequently, the apparent crack length can be used a measure
for quantifying the rate of solution convergence under different conditions. However, in the
case of the Al2O3/TiB2 composite (Figure 5b) crack path is not straight. Instead, the crack
follows a zig-zag pattern along the interface between the TiB2 particles and the Al2O3 matrix.
Additionally, multiple crack fronts are active. A realistic quantification of solution convergence
in this case should consider actual crack paths and stress fields. Therefore, our discussions
below involve comparisons of stress fields and crack patterns as well as crack lengths in the
case of the Al2O3/TiB2 composite. In addition, the time history of total energy dissipated
(� = ∫

Sd
�d dS, Sd being the total crack surface area) is also compared in all cases. As a

practical measure, solution convergence is said to have occurred if the crack lengths and total
energy dissipated from two successive calculations are within ±5% of each other over the
duration deformation analysed.

Equations (36) and (37) show that the lower bound decreases as �0 decreases. When �0 = 0,
the lower bound is 0; consequently, only the upper bound exists. For reasons discussed earlier,
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Figure 5. Crack formation and stress contours in: (a) Al2O3; and (b) Al2O3/TiB2 at time t = 0.12�s.
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Figure 6. Time histories of: (a) apparent crack length; and (b) total energy dissipated for different
values of stiffness parameter (Al2O3).

we avoid the use of initially rigid cohesive relations. To examine the effect of �0 on solution
convergence, calculations are carried out using a fixed element size of h = 2 �m for the
homogeneous Al2O3. The results for four values of �0 (0.02, 0.005, 0.002, and 0.001) are
shown in Figure 6. Both the time of crack initiation and the growth of cracks are significantly
influenced by the variation in �0 (Figure 6(a)). A similar trend is observed for the energy
dissipated in Figure 6(b). The solutions converge as �0 decreases. The results for �0 � 0.002
are quite close to each other, suggesting an empirical threshold for convergence. Based on this
result, the lower bound for the element size in Equation (36) for the problem analysed can be
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Figure 7. Time histories of apparent crack length for different element sizes (Al2O3).

more accurately stated as

dz = 32?h > 0.45 �m (38)

To further examine this issue, calculations with three different element sizes (h = 1, 2 and
4 �m) and �0 = 0.02 are carried out. The results are shown in Figure 7. The solutions (as
measured by the crack length history) diverge as h is decreased. The reason is clear: the
lower bound for the mesh size given by Equation (36) is 4.5 �m in this case, higher than
the mesh sizes actually used. This combination of material parameters and mesh design does
not allow the conflicting requirements on mesh size embodied in Equation (36) to be satisfied
simultaneous, directly causing the solution divergence seen. Figure 7 also shows that the crack
initiation time increases and crack speed decreases with decreasing mesh sizes. This is because
the increasing density of cohesive surfaces due to reduction in mesh size causes severe material
softening that leads to lower wave speeds. Accordingly, the crack speed decreases. This is a
direct consequence of the reduction in the overall stiffness of the model associated with mesh
refinement.

Figure 8(a) shows the time histories of the apparent crack length for Al2O3 ceramic specimens
with cohesive surfaces specified only along a straight line in front of the initial pre-crack. Four
finite element sizes (h = 2, 4, 8 and 16 �m) are used for the region ahead of the crack
tip with uniform elements. Clearly, the difference between the crack length histories becomes
increasingly smaller as the element size is decreased, indicating solution convergence. This
convergence occurs for finite element sizes in the range specified by Equation (38). Note that
the lower bound of the finite element size is not specifically relevant for this figure since
the specification of cohesive surfaces only along a constrained path does not lead to further
stiffness reduction as the mesh is refined. In such cases, there is no effective lower limit on the
mesh size. However, the results shown confirm relevance of the upper limit in Equation (34).
Specifically, the results indicate that accurate resolution of the stress field in a cohesive zone
is possible only if the element size is less than one-tenth of the size of the cohesive zone.
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Figure 8. Time histories of crack length for Al2O3 with �0 = 0.001: (a) case with cohesive
elements only along the line in front of the initial crack tip; and (b) case with cohesive elements

along all finite element boundaries.

In order to obtain a more accurate characterization of the upper bound, calculations are
carried out for Al2O3 specimens with distributed cohesive surfaces. A stiffness parameter of
�0 = 0.001 and four finite element sizes (h = 1, 2, 4 and 8 �m) are used. Figure 8(b) shows
the time histories of the apparent crack length for these element sizes. The solutions converge
quickly as the element size is below one-tenth of the cohesive zone size (h < 3 �m), with the
crack length histories for h = 1 and 2 �m nearly coinciding. Note that convergence is achieved
here by keeping the element size well below the upper limit of 32 �m and above the lower
limit of 0.45 �m specified in Equation (38). The results in Figures 8(a) and 8(b) allow the
upper limit to be more accurately specified in an empirical manner for the conditions analysed.
The tightened empirical range can be expressed as

0.1dz � 3 �m > h > 0.45 �m (39)

Here, the upper bound is based on the observations from Figures 8(a) and 8(b). On the other
hand, the lower bound comes directly from Equation (38).

Inhomogeneous and multiphase microstructures contain length scales that can affect solution
convergence in CFEM calculations. The applicability of the above criterion should also be anal-
ysed in such a context. For example, the lower bound on element size is based on an energy
argument which assumes homogeneous material properties. Although this does not represent a
fundamental issue because the criterion can always be applied ‘conservatively’ for each locally
homogeneous region, it is important to verify the usefulness of the criterion for heterogeneous
materials. For this purpose, calculations are carried out for an Al2O3/TiB2 ceramic compos-
ite system. A typical microstructure consisting of TiB2 reinforcements in an Al2O3 matrix,
cf. Reference [69], is obtained from a digitized micrograph of an actual material sample. To
carry out the analysis, the interfacial bonding strength (or the maximum tensile strength in
the cohesive law in Equation (11)) between the two phases is chosen to be the same as that
for the matrix material. Interfacial and bulk parameters for the constituents are given Table I.
Before the analysis can be carried out, we need to make sure that the microstructure window in
Figure 4 contains a sufficiently large microstructural sample for resolving the fracture process
over the duration of interest without significant edge effect. For this purpose, two different
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Figure 9. Two different microstructural window sizes: (a) 80 × 400 �m; and (b) 40 × 400 �m.
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Figure 10. Time histories of: (a) total crack length; and (b) total energy dissipated for two different
microstructural window sizes (Al2O3/TiB2).

window sizes (see Figure 9) are used. In both cases, h = 2 �m and �0 = 0.001, allowing the
conditions of Equation (39) to be satisfied. Figure 10 shows the time histories of total crack
length and energy dissipated for the two cases. The results are essentially the same, suggesting
that either sample size is sufficient for resolving the fracture process over the time duration
analysed. Based on this result, all calculations here and in References [59, 60] are carried out
with the smaller window size.

To verify the applicability of the criterion to heterogeneous materials, four values of �0
(0.1, 0.03, 0.01, and 0.005) are considered along with h = 2 �m. The results in Figure 11(a)
show that the time history of apparent crack length starts to converge as �0 approaches 0.005.
To further analyse the issue, calculations are also carried out for h = 1 and 2 �m, with �0 =
0.001. The near coincidence of the apparent crack length histories in Figure 11(b) indicates
convergence of the solutions. This convergence is more clearly seen in the crack paths and
stress contours from these two calculations shown in Figure 12. Clearly, not only the crack
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Figure 11. Apparent crack length histories in Al2O3/TiB2 microstructures: (a) results for different �0
values with h = 2 �m; and (b) results for different h values with �0 = 0.001.
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Figure 12. Stress contours and crack patterns in Al2O3/TiB2 microstructures
with �0 = 0.001 at time t = 0.12 �s: (a) h = 2 �m; and (b) h = 1 �m.

paths are nearly identical, the contours of �22 also closely resemble each other. The results
here confirm the applicability of the criterion in Equation (39) to inhomogeneous materials
with microstructures as well.

Finally, we close by pointing out that calculations using several real microstructures of the
Al2O3/TiB2 composite system have been carried out under various conditions. The results
have allowed the effects of phase arrangement, phase morphology, and phase size scale to be
analysed and quantified. More details of the analyses and results are given in Reference [59].
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5. CONCLUDING REMARKS

An analysis of the factors influencing solution convergence in a CFEM model with bilinear
variable stiffness cohesive surfaces has been carried out. In the formulation, the initial stiffness
is an independent variable of the model. As a result of the analysis and calculations, the
following points can be highlighted.

1. Factors setting length scales and requiring sufficiently small element sizes for solution
convergence include cohesive zone size and characteristic microstructural dimensions. First-
order approximations of the cohesive zone size have been used to obtain an upper bound
of allowable finite element sizes, consistent with what has been analysed in the literature;

2. A lower bound for element size in two-dimensional CFEM models with cross triangular
elements has been obtained to limit changes in model response due to stiffness reduction
associated with the specification of cohesive surfaces in a distributed manner. Both the
upper bound and the lower bound are given as functions of bulk and interfacial properties
of relevant materials;

3. Calculations are carried out under conditions of plane strain and uniform meshes with
cross-triangle elements. The results are used to empirically refine the upper and lower
bounds for models with Al2O3 or Al2O3/TiB2 material properties.

4. Although a specific mesh design and a hyperelastic material constitutive characterization
are involved here, the framework of analysis, the parametric dependence, and the general
trends revealed by the criterion developed here should be a useful guide for choice of
element size for CFEM models with other element design and constitutive characterizations
as well. Accurate specifications of the limits under differing conditions can be obtained
in a manner similar to what is employed here.

APPENDIX A: EFFECTIVE MODULI OF CFEM MODELS WITH
CROSS-TRIANGLE ELEMENTS

Case I (Uniform uniaxial tension): Suppose that the discretized CFEM system and its equivalent
homogeneous system are both subjected to uniform uniaxial tensile loading under stress �0 in
the x-direction. We calculate the effective Young’s modulus for the discrete system Eeff via
an equivalent strain energy method by equating the discrete system’s strain energy to that of
the equivalent homogeneous system. The representative volume we choose should consist of a
sufficient (and variable) number of elements. We assume the part of the discrete system analysed
consists of N ×M unit rectangles and each rectangle contains 4 cross-triangular elements. Here,
N and M are variable. Obviously, the total potential energy stored in the discrete system is
the sum of the strain energy stored in all the bulk elements and the cohesive energy stored in
the cohesive surfaces, i.e.

U(1) = U
(1)
b + U(1)

c (A1)

Under uniform tensile loading with �0, the only nontrivial stress component in the bulk elements
is �xx = �0. Simple derivations yield

U
(1)
b = N × M × h2 × 1

2

�2
0

E′
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and

U(1)
c = N × M × h ×

[
2 × √

2 × (�0/2)2

2

�0�tc

�Tmax
+ 2 × √

2 × (�0/2)2

2

�0�nc

Tmax
+ �2

0

2

�0�nc

Tmax

]

= N × M × h × 1

2
�2

0

[(√
2 + 2

2

)
�0�nc

Tmax
+

√
2

2

�0�tc

�Tmax

]
(A2)

The potential energy for the equivalent homogeneous system is

U(2) = N × M × h2 × 1

2

�2
0

Eeff
(A3)

Requiring that

U(1) = U
(1)
b + U(1)

c = U(2) (A4)

we obtain

1

Eeff
= 1

E′ + 1

h

[(√
2 + 2

2

)
�0�nc

Tmax
+

√
2

2

�0�tc

�Tmax

]
(A5)

Case II (Biaxial uniform tension): This case involves uniform biaxial tensile loading with
intensity �0 in both x- and y-directions. The block is under a two-dimensional hydrostatic
loading with �xx = �yy = �0. The potential energy of discrete system is

U(1) = U
(1)
b + U(1)

c (A6)

where

U
(1)
b = N × M × h2 × �2

0

E′ (1 − �)

and

U(1)
c = N × M × h ×

[
2 × √

2 × �2
0

2

(
�0�tc

�Tmax

)
+ 2 × �2

0

2

(
�0�nc

Tmax

)]

= N × M × h × �2
0

[√
2

(
�0�tc

�Tmax

)
+
(

�0�nc

Tmax

)]
(A7)

The potential energy for the equivalent homogeneous system is

U(2) = N × M × h2 × �2
0

Eeff
(1 − �eff) (A8)
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The requirement that U(1) = U
(1)
b + U

(1)
c = U(2) yields

1 − �eff

Eeff
= 1 − �

E′ + 1

h

[√
2

(
�0�tc

�Tmax

)
+
(

�0�nc

Tmax

)]
(A9)

One can solve for �eff by substituting (A5) into the above equation.
Case III (Pure shear): Under conditions of loading with a uniform pure shear traction on

the surfaces, the potential energy of the discrete system is

U(1) = U
(1)
b + U(1)

c (A10)

where

U
(1)
b = N × M × h2 × �2

0

2G

and

U(1)
c = N × M × h ×

[
2 × �2

0

2

(
�0�tc

�Tmax

)
+ 2 × √

2 × �2
0

2

(
�0�nc

Tmax

)]

= N × M × h × �2
0

[(
�0�tc

�Tmax

)
+ √

2

(
�0�nc

Tmax

)]
(A11)

The potential energy for the equivalent homogeneous system is

U(2) = N × M × h2 × �2
0

2Geff
(A12)

Again, the requirement that U(1) = U
(1)
b + U

(1)
c = U(2) yields

1

Geff
= 1

G
+ 1

h

[
2

(
�0�tc

�Tmax

)
+ 2

√
2

(
�0�nc

Tmax

)]
(A13)

Thus, all three effective parameters have been obtained as functions of constants for the bulk
material and the cohesive surfaces.
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