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Separation of Elastic Waves in Split Hopkinson Bars
Using One-point Strain Measurements

by S. W. Park and M. Zhou

ABSTRACT—A method for the analysis of elastic waves in
split Hopkinson bars for unlimited time durations is presented.
This method allows the separation of component waves trav-
eling in opposite directions in each bar using the strain history
measured at one point on the bar and a known end condition
for it. The method extends the time period for which valid
experimental data can be extracted for a split Hopkinson bar
apparatus and eliminates the need for a second independent
measurement of the stress waves required in other meth-
ods for such extended analyses. Comparisons with the two-
point method, which requires two independent strain mea-
surements, show good agreement between the two methods.
The accuracy and feasibility of the method are demonstrated
through its application to impact experiments on composite
laminates. The use of the current method in determining the
response of a fiber-reinforced composite laminate under im-
pact loading is described.

KEY WORDS—elastic waves, SHPB, one-point method, im-
pact, feber-reinforced composites

The technique of a split Hopkinson pressure bar (SHPB)
has been widely used in studies of the dynamic behavior of
materials. This wide use is largely due to its ability to resolve
the time evolution of material response and the simplicity of
its operation. The technique is based on the theoretical analy-
sis of wavemotion in the elastic bars involved. Following the
original introduction byHopkinson1 and an extensive critical
study byDavies,2 Kolsky3 developed the present formof split
bars with the specimen being sandwiched in between. Over
the years, the technique has been extended to tensile4 and
torsional5 configurations.

In the analysis of SHPB measurements, the time duration
for direct interpretation of incident, reflected and transmitted
pulses from strain gage readings is usually possible for only
up to the time of one round-trip wave reflection in the bars.
The lengths of bars and the positions of strain gages are de-
signed such that the incident pulse and the first reflected pulse
in each bar can be recorded separately during this period.
Subsequently, the superposition of stress pulses traveling
in opposite directions complicates strain gage readings and
makes the direct inference of individual pulses difficult. As
a result, measurements outside this time window are usually
discarded, and the corresponding portion ofmaterial response
remains unanalyzed.
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However, there are cases in which the extended time his-
tory of mechanical quantities is needed. For instance, when
testing low-impedancematerials, such as the polymeric foam
analyzed by Zhao and Gary,6 the desired maximum strain
is large. Therefore, longer test duration and longer mea-
surements are needed. Bacon, Farm and Lataillade7 studied
dynamic fracture toughness of brittle materials based on the
extended time histories of force and load-point displacement
measured using amodifiedHopkinson pressure bar. The anal-
ysis of the impact response of composite laminates is another
example. Damage in the specimen often accumulates over an
extended period of time due to repeated impact of the incident
bar on the specimen. Although it is often desirable to use ex-
perimental configurations that impart only one loading pulse
on the specimen,8,9 multiple incident pulses simulate actual
contact interactions in certain applications and provide an op-
portunity for the damage evolution in the specimen material
to be analyzed. Such an analysis necessitates interpretation
of the time history of damage evolution through the histories
of contact force, displacement and energy absorption for the
duration of interest beyond the initial period of one round-trip
wave propagation in the bars.

Lundberg and Henchoz10 presented a recursive formula
for determining the extended histories of strain, normal force
and particle velocity from the strain historiesmeasured at two
different locations on a bar. This method (referred to as the
two-point method) is based on the theory of one-dimensional
wave propagation in cylindrical bars and involves solving
time domain difference equations. The method was used by
Karlsson, Lundberg and Sundin11 to investigate the interac-
tion between a drill bit and rock in percussive drilling and
by Lundberg, Carlsson and Sundin12 to analyze the wave
propagation in a nonuniform bar with a variable character-
istic impedance. Yanagihara13 independently proposed the
two-point method with a similar numerical formulation as
given byLundberg andHenchoz.10 Recently, Zhao andGary6

improved the two-pointmethod by incorporating a correction
for dispersion effects and applied the method to the testing of
polymeric foams and metallic tubes that involve large strains
and displacements.

In the two-point method, two independent strain histories
must be measured to determine the unknown functions for
the two transient pulses traveling in opposite directions in a
bar. However, most SHPB apparatuses involve one gage on
the input bar and one gage on the output bar. Also, they are
designed such that at least one end condition (usually traction
free) of each bar is known at all times. These facts can be used
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to eliminate one of themeasurements needed in the two-point
method.

In this paper, we will show that the two unknown wave
functions can be determined from one measured strain his-
tory and a known end condition. A new algorithm for the
separation of the two component wave functions is presented
below. Referred to as the one-point method hereafter, this
method allows the conventional SHPB configuration to be
used without any modification. Another benefit is that a large
amount of existing data acquired from a one-gage setup can
be reanalyzed for extended material response characteriza-
tion. The accuracy of this method is demonstrated through
its application to impact experiments on a fiber-reinforced
composite laminate. A comparison is also given between the
new method and the two-point method.

Separation of Elastic Waves in the SHPB

Wave motion in a slender cylindrical bar can be described
by the one-dimensional wave equation

∂2u

∂x2
= 1

c2

∂2u

∂t2
, (1)

where c = (E/ρ).5 is the longitudinal wave speed of the bar,
withE being the Young’s modulus and ρ the mass density of
the bar material. The general solution to (1) consists of two
arbitrary functions that represent the wave forms traveling in
the positive and negative x-directions, that is,

u(x, t) = u1

(
t − x

c

)
+ u2

(
t + x

c

)
. (2)

The longitudinal strain may be expressed in a similar form:

ε(x, t) = ε1

(
t − x

c

)
+ ε2

(
t + x

c

)
, (3)

where ε(x, t) = ∂u(x, t)/∂x and functions ε1 and ε2 are
related to u1 and u2 by cε1(ξ) = −du1(ξ)/dξ and cε2(η) =
du2(η)/dη, respectively. The particle velocity can bewritten,
in terms of ε1 and ε2, as

v(x, t) = c
[
−ε1

(
t − x

c

)
+ ε2

(
t + x

c

)]
, (4)

where v(x, t) = ∂u(x, t)/∂t . Other mechanical quantities,
such as stress, mechanical power and strain energy density,
can be determined from the strain and velocity given by (3)
and (4). Clearly, the complete solution depends entirely on
functions ε1 and ε2. Therefore, an essential part of the analysis
is to determine these functions using strain measurements.

Figure 1 is a schematic illustration of a typical SHPB
apparatus. The specimen is placed between the input and
output bars. Impact is generated by the striker bar, which
is propelled by a gas gun. Usually, one strain gage station
is placed on the input bar and another on the output bar. At
each gage station, two strain gages aremounted diametrically
opposite to each other on the bar to enhance the signal and
ignore the bending effect. The strain gage output is recorded
by a high-speed oscilloscope during the experiment.

In the two-point method, as summarized in the appendix,
ε1 and ε2 are determined through directmeasurement of strain
histories at two different locations on each of the bars. This
approach requires an additional gage to be mounted on each
of the bars. In a typical SHPB test, the left end of the input bar
is free of traction at all times except for the durationwhen it is
in contact with the striker bar. For the output bar, the right end
of the bar is free of traction at all times until it is arrested by
a stopper long after the experiment. In both cases, the strain
history at the free end is zero. This known condition can be
used effectively to replace one of the measurements needed
in the two-point method.

Figure 2 shows the Lagrangian (or time-distance) diagram
for wave propagation in a cylindrical bar of length L. The
strain gage is mounted at a distance a from the left end.
The right-going wave is ε1, and the left-going wave is ε2.
Substitution of x = a into (3) results in

εA(t) = ε1(t − ta) + ε2(t + ta), (5)

where εA(t) = ε(a, t) and ta = a/c. The input and output
bars are considered separately because of the difference in
their end conditions.

Fig. 1—A schematic illustration of the split Hopkinson pressure bar apparatus
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Fig. 2—Lagrangian diagram for longitudinal waves in a cylindrical bar

Input Bar

The duration of impact between the striker bar and the
input bar is 2L0/c, where L0 is the length of the striker bar.
We assume here that the striker bar and input bar are of the
same mechanical impedance and diameter, which is the case
for most SHPB systems. For the incident pulse and the first
reflected pulse from the input bar-specimen interface to be
recorded separately without superposition at the strain gage
at x = a, one requires that L0 < (L − a), where L is the
length of the input bar. Note that 2(L − a)/c represents the
maximum duration for no superposition at a (see Fig. 2).
Therefore, 2L0/c < 2(L − a)/c, or L0 < L − a. In Fig.
2 and below, T = 2L/c, and t = 0 synchronizes with the
instant when the striker hits the input bar.

(a) For t < T − ta

No reflected wave passes through the strain gage at x = a,
thus,

ε2(t + ta) = 0. (6)

From (5) and (6), one finds

εA(t) = ε1(t − ta). (7)

(b) For T − ta < t < T + ta

Since 2L0/c < T − 2ta ,

ε1(t − ta) = 0. (8)

From (5) and (8), one finds

εA(t) = ε2(t + ta). (9)

(c) For t > T + ta

Both ε1(t − ta) and ε2(t + ta) are nonzero in general.
However, invoking the traction-free boundary condition at
x = 0 via (3), one obtains

ε1(t) + ε2(t) = 0. (10)

From (5) and (10), one finds

εA(t) = −ε2(t − ta) + ε2(t + ta). (11)

Equations (6)-(11) can be combined, with changes of vari-
ables (t − ta) → ξ and (t + ta) → η, to give functions ε1 and
ε2 for the input bar in terms of the measured strain history εA
as follows:

ε1(ξ) =



εA(ξ + ta) for ξ < T − 2ta
0 for T − 2ta < ξ < T

−ε2(ξ) for ξ > T

(12)

and

ε2(η) =


0 for η < T

εA(η − ta) for T < η < T + 2ta
ε2(η − 2ta) + εA(η − ta) for η > T + 2ta

.

(13)

Output Bar

In an SHPB test, part of the incident pulse is transmitted
into the output bar through the specimen. The transmitted
pulse propagates through the output bar and is reflected back
into the bar by the free end. In Fig. 2, the left end of output
bar is in contact with the specimen and the right end remains
traction free until it strikes a stopper for arresting. A sufficient
gap between the free end and the stopper can always be given
to allow sufficient time for data analysis using the free end
condition. The values ofL and a belowmay be different from
those for the input bar.

(a) For t < T − ta

The situation is the same as in the case of the input bar,
and (6) and (7) apply.

(b) For t > T − ta

Both ε1(t − ta) and ε2(t + ta) are nonzero in general.
However, invoking the traction-free boundary condition at
x = L via (3), one finds

ε1

(
t − L

c

)
+ ε2

(
t + L

c

)
= 0. (14)

This, along with (5), gives

ε1(t − ta) = ε1(t − T + ta) + εA(t). (15)

The combination of (6), (7), (14) and (15), alongwith changes
of variables (t − ta) → ξ and (t + ta) → η, yields functions
ε1 and ε2 for the output bar in terms of the measured strain
history εA as

ε1(ξ) =
{
εA(ξ + ta) for ξ < T − 2ta ,

ε1(ξ + 2ta − T ) + εA(ξ + ta) for ξ > T − 2ta ,
(16)
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and

ε2(η) =
{
0 for η < T ,

−ε1(η − T ) for η > T .
(17)

Experimental Verification and Application of
the Method

Verification Using an Experiment on Composites

To verify its accuracy, the one-point method is used to an-
alyze the wave propagation during a three-point bend impact
experiment. The configuration of the experiment is shown in
Fig. 3. The specimen (76.2 mm × 19.05 mm × 3.78 mm),
made of a 16-ply, quasi-isotropic, S-2 glass/BMI composite
laminate, is placed between the input and output bars via
a miniature three-point bend fixture. This fixture facilitates
localized damage in the specimen under impact loading. The
impact response of the specimen over an extended period
of time is analyzed. Specifically, the histories of contact
force, displacement and mechanical work are determined
using the one-point method. Two strain gages are mounted
on each bar as shown in Fig. 3, providing two independent
measurements in each case. Only one gage on each bar (e.g.,
A for the input bar and C for the output bar) is needed for
the one-point method. The second gage (B and D for the two
bars, respectively) is used to provide a redundant measure to
validate the calculated results at the same location using the
one-point method.

Figure 4 shows the strain histories measured by gages
A and C. The initial compressive wave is partly reflected
back into the input bar as a tensile wave by the input bar-
specimen interface and partly transmitted into the output bar
through the specimen as a compressive wave. A series of
bar-specimen interactions and free-end reflections continue
following initial impact. Wave functions ε1 and ε2 are de-
termined using (12)-(13) for the input bar and (16)-(17) for
the output bar. The results are shown in Fig. 5. Note that
ξ = t−ta and η = t+ta , as previously defined. The functions

Fig. 3—Configuration of an impact experiment on a composite
laminate

Fig. 4—Strain histories measured at A and C

Fig. 5—Wave functions ε1 and ε2: (a) input bar, (b) output bar

allow the strain histories at B and D to be calculated via
(3). A comparison of the calculated profiles and the mea-
sured profiles is given in Fig. 6. Good agreement is seen
for the input and output bars. The small local differences
can be attributed to the effects of dispersion and signal
noise.
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Fig. 6—A comparison of measured and predicted strain histories (a)
at B, (b) at D

To further validate the proposed method and compare
it with the two-point method, experiments were conducted
using the striker and the input bar only. It was found that
the one-point method and the two-point method predict the
waveforms equally well.

Impact Response of a Composite Laminate

Particular attention is given to contact force history, par-
ticle velocity, displacement, work transfer and energy ab-
sorption during the impact loading. The normal forces at the
input bar-specimen and specimen-output bar interfaces are
computed via

Fin(t) = AEεin(L, t)

Fout (t) = AEεout (0, t),
(18)

where A is the cross-sectional area of the bars and εin and
εout denote strains in the input and output bars, respec-
tively. Figure 7 shows Fout (t) obtained using (18). In the

Fig. 7—Contact force history at the specimen-output bar interface

experiments conducted, the forces on the two sides of the
specimen are essentially the same except for small experi-
mental noise. Clearly, compressive loading on the specimen
occurs primarily during the first two cycles of wave rever-
beration in the input bar, and bar-specimen interaction ceases
after approximately 2 ms.

The velocity histories at the interfaces are computed via
(4). Here, x = L for the input bar-specimen interface, and
x = 0 for the specimen-output bar interface. These profiles
are plotted in Fig. 8. It can be seen that the velocity at the
input bar end gradually becomes oscillatory and the output
bar end gradually picks up speed during the experiment.

The histories of mechanical power through the two in-
terfaces are calculated from the force and velocity histories
at the interfaces. The work done by the input bar to the
specimen is

Win(t)=
∫ t

0
Pin(t) dt =AE

∫ t

0
εin(L, t)vin(L, t) dt. (19)

Similarly, the work done by the specimen to the output bar is

Wout (t)=
∫ t

0
Pout (t) dt =AE

∫ t

0
εout (0, t)vout (0, t) dt.(20)

In (19) and (20), P is mechanical power and vin and vout are
particle velocities in the input and output bars, respectively.
The energy absorbed by the specimen is the difference be-
tween Win and Wout , that is,

Eabs(t) = Win(t) − Wout (t). (21)

The histories ofWin,Wout andEabs are shown in Fig. 9. Note
that the energy absorbed by the specimen has a recoverable
part and an unrecoverable part. The unrecoverable part of the
energy is expended on generating damage. The fluctuations
in the absorbed energy profile in Fig. 9 are due to the storage
and release of strain energy during the impact process. This
figure indicates that most of the energy absorption occurs
during the first two cycles of wave reverberation (up to 2 ms,
consistent with the contact force history in Fig. 7).
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Fig. 8—Velocity histories at the bar-specimen interfaces

Fig. 9—Work histories at the bar-specimen interfaces

The work transfer between the bars and the specimen can
also be calculated by keeping track of the energy in the input
and output bars, thus providing a cross-check for the energy
absorbency calculation. The total energy in an elastic bar of
length L at any given time t is

E(t) = Ek(t) + Ep(t)

=
∫ L

0

1

2
Aρv2(x, t) dx +

∫ L

0

1

2
AEε2(x, t) dx,

(22)

where Ek and Ep denote the kinetic and strain energies,
respectively. The distributions of v and ε at an arbitrary time
of t = 3 ms for the input and output bars are shown in Figs.
10(a) and 10(b), respectively. The energy absorbed by the
specimen during impact is given by

Eabs(t) = Einput − Ein(t) − Eout (t), (23)

whereEinput is the total energy input into the system andEin

and Eout are the energy carried by the input and output bars,
respectively. The total energy input into the system is the
kinetic energy of the striker bar at t = 0 which may also be

calculated from the initial rectangular waveform measured
from gage A (see Fig. 4), that is,

Einput = 1

2
ρAL0V

2
0 =

∫ ta+#t

ta

AEcε2A(t) dt, (24)

where ta is the time of arrival of the wave front at gage A
and #t = 2L0/c is the duration of the initial rectangular
waveform. Note that Ek = Ep in this case. The energy
absorbed by the specimen calculated according to (23) is
also shown in Fig. 9. The calculations essentiallymatch those
from (21). It should be pointed out that the energy absorbed
by the three-point bend fixture is estimated to be very small
and negligible. Specifically, the total energy carried by the
fixture (with a mass of 0.05 kg) is less than 0.1 J.

Effect of Dispersion

The treatment of wave propagation based on (1) as dis-
cussed above assumes that the pulse shapes remain un-
changed as they propagate (i.e., nondispersive). However,
this assumption is valid only when the impact that pro-
duces the pulse is applied slowly. Otherwise, the result-
ing pulse shows dispersion.2 According to the Pochham-
mer frequency equation,14 phase velocity is a decreasing
function of frequency (or wave number) of the harmonic
wave components and dispersion is more significant for long
wavelengths.

Fig. 10—Distributions of strain and velocity at t = 3 ms: (a) input
bar, (b) output bar
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A number of authors have analyzed the dispersion effect
and corrections for it in the SHPB.15−18 They have shown
that dispersion correction can enhance the analysis accuracy,
especially when the diameter of the bar is large. However,
in most cases, the dispersion corrections were limited to the
incident, first reflected or transmitted pulses. Recently, Zhao
and Gary6 incorporated a dispersion correction scheme into
the two-point method and applied the scheme to the analysis
of SHPB tests for extended durations. This scheme may also
be incorporated into the one-point method. However, as Zhao
and Gary pointed out, dispersion correction for a waveform
stretched over an extended period of time is difficult, and
correction can be made only in an approximate sense. For
example, when the analysis time window stretches over an
extended duration, the waveforms of ε1 and ε2, obtained
either from the one-pointmethodor the two-pointmethod, are
long and highly irregular in general. In this case, dispersion
corrections on a segment-by-segment basis may be consid-
ered. A lengthy waveform is first segmented into a number
of waveforms, each of which is defined only over a finite
time interval (and set to be zero outside this interval). Each
segment is dispersion corrected on an individual basis. How-
ever, it is found that Fourier transform of segmented wave-
forms often produces waveforms containing sharp (vertical)
peaks and valleys, and hence dispersion correction in this
case is not very useful. Because of the numerical difficulties
encountered, and because the diameter (19.05mm)of the bars
involved in our tests is not particularly large, no dispersion
correction is incorporated in our current analysis.However, in
principle, one may incorporate dispersion correction (at least
on a segment-by-segment basis) into the one-point method
presented in this paper.

Conclusions

A simple, efficient algorithm for separating component
waves traveling in opposite directions in cylindrical, elastic
bars is presented and validated experimentally. The algorithm
is based on the one-dimensional wave propagation theory
and requires the use of measured strain history at only one
location on a bar and a known end condition for it. Ap-
plication of this algorithm requires that the striker bar be
shorter than the input bar less the distance between the strain
gage station and the striker-input bar interface, a condition
trivially satisfied in most SHPB configurations. The method,
like the existing two-point method, effectively eliminates
the limit on the time window for valid data interpretation
in the conventional SHPB technique. The validity of the
method is verified experimentally by comparing predictions
and direct measurements. While obviating the need for one
of the experimental measurements in the two-point method,
the new method has the same accuracy as that of the two-
point method. The one-point method allows the conventional
SHPB configuration to be used without any modification for
the analysis of material behavior over an unlimited duration
of time. An additional benefit is that a large amount of
existing data acquired from one-gage SHPB setups can be
reanalyzed for extended material response characterization.
This new method is used to analyze the impact response of
a fiber-reinforced polymer-matrix composite in a three-point
bend loading configuration. The histories of contact force,
boundary velocities, mechanical work and absorbed energy
are obtained.

Appendix: The Two-Point Method

The algorithm using two strain measurements was orig-
inally presented by Lundberg and Henchoz10 and Yanagi-
hara.13 This method is recast here in amanner consistent with
the one-point method for comparison of the two methods.

The strain histories at point A (x = a) and point B (x = b)
on a bar can be written via (3) as

εA(t) = ε1(t − ta) + ε2(t + ta) (A1)

and

εB(t) = ε1(t − tb) + ε2(t + tb), (A2)

where εA(t) = ε(a, t), εB(t) = ε(b, t), ta = a/c and
tb = b/c.

(a) For t < T − ta (Where T = 2L/c; See Fig. 2)

No reflected wave passes at x = a, thus,

ε2(t + ta) = 0. (A3)

From (A1) and (A3), one finds

εA(t) = ε1(t − ta). (A4)

Information from εB(t) is redundant and unused for this
period of time.

(b) For t > T − ta

Equation (A2) can be transformed, with an appropriate
shift in time, into

εB(t − tb + ta) = ε1(t − 2tb + ta) + ε2(t + ta). (A5)

Subtracting (A5) from (A1) and rearranging, one finds

ε1(t−ta)=ε1(t−2tb+ta)+εA(t)−εB(t−tb+ta). (A6)

From (A1), one finds

ε2(t + ta) = −ε1(t − ta) + εA(t). (A7)

(A3), (A4), (A6) and (A7) can be combined, with changes of
variables, (t − ta) → ξ and (t + ta) → η, to yield functions
ε1 and ε2 for the bar in terms of εA and εB as

ε1(ξ) =




εA(ξ + ta) for ξ < T − 2ta
ε1(ξ − 2tb + 2ta)

+εA(ξ + ta)

−εB(ξ − tb + 2ta) for ξ > T − 2ta

(A8)

and

ε2(η) =
{
0 for η < T .

−ε1(η − 2ta) + εA(η − ta) for η > T
(A9)

It should be noted that in contrast to the one-point method,
no end condition is involved here; therefore, there is no
specific restriction on the duration of input pulse applied by
the striker bar.
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