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Abstract
An equivalent continuum is de®ned for dynamically deforming atomistic

particle systems treated with concepts of molecular dynamics. The discrete
particle systems considered exhibit micropolar interatomic interactions which
involve both central interatomic forces and interatomic moments. The
equivalence of the continuum to discrete atomic systems includes, ®rstly,
preservation of linear and angular momenta, secondly, conservation of internal,
external and inertial work rates and, thirdly, conservation of mass. This
equivalence is achieved through the de®nition of, ®rstly, continuum stress and
couple stress ®elds that make the same contribution to motion and deformation
as internal interatomic forces and couples, secondly, continuum ®elds of body
force, body moment, surface traction and surface moment that make the same
contribution to motion and deformation as external forces and moments on the
atoms, thirdly, a continuum deformation ®eld that is work conjugate to the
continuum kinetic ®elds and consistent with the atomic deformation ®eld and,
fourthly, continuum distributions of mass and moment of inertia that preserve the
linear and angular momenta as well as kinetic energy. This equivalence holds for
the entire system and for volume elements de®ned by any subset of particles in the
system; therefore, averaging and characterization across di� erent length scales are
possible and size-scale e� ects can be explicitly analysed. The framework of
analysis provides an explicit account of arbitrary atom arrangement, admitting
applications to both crystalline and amorphous structures. The analysis also
applies to both homogeneous materials with identical atoms and heterogeneous
materials with dissimilar atoms. For non-polar atomic systems with only central
interatomic forces, the ®elds of couple stress, body moment and surface moment
vanish. This demonstrates that, on the interatomic level, interatomic moments
give rise to couple stresses of dynamically equivalent nature.

} 1. Introduction
Continuum theories and molecular dynamical (MD) theories of material beha-

viour are two distinct classes of descriptions, the ®rst focusing on the structural
response on di� erent size scales and the latter emphasizing the structural reality of
materials and fundamental mechanisms operative at atomic dimensions. Each has its
own advantages and limitations. The continuum framework is more convenient for
characterizations on higher length scales and the molecular framework is important
to account for nanoscale mechanisms. Explicit MD descriptions are also required to
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interface with quantum-mechanica l predictions of material behaviour and material
properties. Reconciliation of the di� erences in the two descriptions and, more impor-
tantly, the integration of the two frameworks of analyses for cross-scale character-
ization are a great challenge in physics, material science and mechanics. Despite their
di� erent discrete and continuous perspectives, these atomistic and continuum the-
ories are based on the same fundamental laws, including Newton’s laws of motion
and conservation of mass. Moreover, work rates are fundamental incremental quan-
tities to be reconciled in both frameworks in order to assert balance of energy and to
track dissipation. These fundamental laws provide a basis for interpretations of the
results of one description in the context of the other.

The continuum interpretation of results of molecular theories is an important
task in the scale-up of nanoscale characterizations of material behaviour. Issues
involved include continuum stress interpretation of discrete atomic force ®elds on
nanoscales, body and surface forces due to the e� ects of non-local interactions, and
discreteness- and non-locality-induced length scales. Apparently, such e� ects must
be captured and quanti®ed when a transition is made from discrete molecular
dynamics to continuum mechanics. The analysis of stress is important, as it measures
the intensity and nature of internal interactions in materials. The most commonly
used de®nition is the virial stress, which is an average measure describing the
momentum ¯ow through the surface of a spatial element over which averaging is
carried out (Lutsko 1988). This stress includes both kinetic and potential energy
contributions. Although, the virial thermodynamic approach (Clausius 1870) of
calculating the stress tensor is widely used, it has shortcomings. It smears the e� ect
of inhomogeneities due to volume averaging. For any given set of atoms, the de®ni-
tion requires the identi®cation of an appropriate volume for averaging. In atomic
ensembles with irregular atom arrangement, the identi®cation of this volume can be
ambiguous. Most importantly, a work-conjugate continuum deformation ®eld is not
available for the virial stress to allow regular continuum interpretation, analysis and
scaling of MD results.

In this paper, an equivalent continuum is de®ned for dynamically deforming MD
particle systems. Not only are work-conjugate continuum stress and deformation
®elds de®ned, but also speci®ed are all other work- and momentum-preserving
kinetic quantities and mass distribution for the equivalent continuum. The conti-
nuum is equivalent to its corresponding MD system in that, at all times, it preserves
the linear and angular momenta of the particle system, it conserves the internal and
external mechanical work rates and it has an equal amount of kinetic energy and
contains the same amount of mass as the particle system. Hence, it is a dynamical
representation of the MD system rather than a less strict lower-order thermody-
namic representation. Construction of the continuum ®elds follows a process in
reverse to ®nite-element discretization and weighted superposition. The momentum
and work equivalence is achieved by virtue of the principle of virtual work for fully
dynamic conditions. This equivalence holds for the entire system and, for volume
elements de®ned by any subset of particles in the system, therefore, averaging and
characterization across di� erent length scales are possible and size-scale e� ects can
be explicitly analysed.

Interatomic interactions occur in a variety of forms. Non-polar materials have
interatomic interactions that involve linear central forces. These forces are derived
from potentials that depend on interatomic distances between atoms. The Lennard-
Jones potential accounts for simple pair interactions. For fcc metals, the embedded-
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atom method accounting for multibody interactions has been developed and used
(Daw and Baskes 1983). The modi®ed embedded-atom method (MEAM) has also
been developed to account for the angular dependence of interatomic central force
interactions (Baskes 1987, Baskes et al. 1989). This kind of angular dependence has
nothing to do with the rotational degree of freedom for individual atoms but rather
re¯ects ordered lattice interactions within a potential with limited cut-o� radius. An
extensive review of potentials describing many-body interactions has been given by
Carlsson (1990). As distinguished from pure central force systems, micropolar (on an
atomic scale, perhaps `nanopolar’ would be more accurate) materials exhibit both
interatomic moment interactions and central force interactions (Evans and Murad
1977, 1989). Such situations may arise, for example, in united atom approaches
(Ogilvie 1988, Nath et al. 2001) in which molecules consisting of multiple atoms
are treated as single particles that interact through central forces and moments.
Interparticle moments are also manifested on polarized atomic particles in electric
®elds. A discussion on interatomic moments can be found in the book by Allen and
Tildesley (1992). The central forces in these materials depend on interatomic dis-
tances. The moments, however, depend on interatomic distances as well as angular
positions of the particles. Although the development of atomic potentials is a chal-
lenging task and is still in an early stage, the need for more accurate characterizations
of atomistic behaviour and the advances in ®rst-principles calculations can be
expected to bring about realistic potentials accounting for both central force and
moment interactions in the future.

A general framework of analysis is used here, accounting for both central force
and moment interactions between atomic particles. The particles can be regarded as
representing either individual atoms or collections of atoms, depending on the con-
text. The results are readily specialized to the case of non-polar materials by setting
the interatomic moments to zero. A separate account of the non-polar case can also
be found in the paper by Zhou (2001). The framework of analysis provides an
explicit account of arbitrary atom arrangement, facilitating applications to either
crystalline or amorphous structures. The analysis also applies to both homogeneous
materials with identical atoms and heterogeneous materials with dissimilar atoms.

} 2. Equivalent continuum

2.1. Continuum±particle system equivalence
Consider a dynamically deforming system of N particles which occupies space V

and has an envelope of surface S as illustrated in ®gure 1. At time t, particle i has
position ri, displacement ui and velocity _rri ˆ _uui ˆ dui=dt. The corresponding angu-
lar displacement from a reference state is hi and angular velocity is _hhi. The additional
degrees hi of freedom facilitate treatment of interparticle moment interactions. When
the atomic interaction can be described by a potential, the energy of the atomic
ensemble is

E ˆ F…rij ; hij† …1†

where rij ˆ rij ˆ rj ¡ ri is the central distance between particle i and particle j and
hij ˆ hj ¡ hi is the corresponding di� erence in angular displacements. Equation (1) is
a general form and fully admits many-body interactions in addition to pairwise
interactions. Interparticle force and moment applied on particle i by particle j are
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fij and mij respectively. Note that Newton’s third law requires that fij ˆ ¡fji and
mij ˆ ¡mji . Obviously,

fij ˆ 1

2

qF…rij ; hij†
qrij

rij

rij

;

mij ˆ 1

2

qF…rij ; hij†
qhij

:

…2†

The force and moment on particle i due to atoms or agents that are external to the
system under consideration are f 0

i and m0
i respectively. The total force and moment

respectively on i are

fi ˆ
X

j

fij ‡ f 0
i ˆ f int

i ‡ f ext
i ;

mi ˆ
X

j

mij ‡ m0
i ˆ mint

i ‡ mext
i :

…3†

Here, the summation is over those particles inside the system of N being considered
that interact directly with particle i. It is worthwhile to point out that, owing to non-
local interactions, the external force f 0

i and external moment m0
i can exist for par-

ticles both in the interior of V and on the surface S. Note that the concepts of
internal and external forces are speci®c to the particular subvolume Ve of V con-
sidered. So, in general, f int

i 6ˆ P
j fij , mint

i 6ˆ P
j mij , f ext

i 6ˆ f 0
i , and mext

i 6ˆ m0
i , except

for Ve ˆ V .
The continuum equivalent to the particle ensemble has volume V and surface S.

A material point in the continuum initially at X has position x (or r) in the current
con®guration, so that the displacement and velocity functions are u ˆ x ¡ X and
_xx ˆ _uu respectively. The stress tensor r is related to the surface traction t through
t ˆ n· r, and the couple stress l is related to the surface moment mS through
mS ˆ n· l, where n is the outward unit normal to any internal surface Se or surface
envelope of the body S. Body forces and body moments can result from non-local
e� ects of atoms or agents external to the system under consideration. Let b and mb

denote the densities of the continuum body forces and body moments respectively in
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V. In the following analyses, all kinetic and kinematic quantities are evaluated on the
current deformed con®guration. In general, however, l 6ˆ lT and r 6ˆ rT when
l 6ˆ 0. Also, the continuum has mass density »…x† and moment of inertia density
l…x† (mass and moment of inertia per unit volume) in the current con®guration. The
continuum that we seek to occupy V should be dynamically equivalent to the particle
system. This requires that, at all times,

(i) the stress and couple stress ®elds over the continuum de®ned by a discrete
particle aggregate have the same work rate as the internal interatomic force
®elds,

(ii) the body force, body moment, surface traction and surface moment ®elds
produce the same external work rate as that of the external interatomic force
®elds and

(iii) the kinetic energy of the continuum be the same as that of the discrete
atomic ensemble.

Requirement (i) ensures that the contribution of the continuum stress and couple
stress ®elds to the motion and deformation of continuum (or the particle system) is
the same as that of the original interparticle force ®eld. Requirement (ii) ensures that
the continuum external force and moment ®elds provide the same input to the
motion and deformation of the continuum (or the particle system) as the discrete
particle forces due to external atoms and agents. Requirement (iii) ensures that the
contributions of material inertia to motion and deformation are the same for the
equivalent continuum and the particle system. These separate requirements for
the internal and external work rates and kinetic energy can be satis®ed through
the dynamic principle of virtual work, allowing de®nition of work-preserving ®elds
of continuum stress r and couple stress l, work-preserving continuum traction t,
surface moment mS, body force b and body moment mb), and continuum mass
density »…x† and moment of inertia density l…x†.

For the entire ensemble with N particles, the above requirements can be written
in terms of the dynamic principle of virtual work, that is

¡
…

V

r : dD dV ¡
…

V

l : dw dV ‡
…

V

b· d _uu dV ‡
…

V

mb· dx dV ‡
…

S

t· d _uu dS

‡
…

S

mS· dx dS

ˆ
XN

iˆ1

fi· d_rri ‡
XN

iˆ1

mi· d _hhi

ˆ
…

V

» �uu· d _uu dV ‡
…

V

l· �hh
¡

· d _hh dV

ˆ
XN

iˆ1

mi �rri· d_rri ‡
XN

iˆ1

li· �hhi

¡
· d _hhi; …4†

where the symbol d in dD; dw; d _uu; d _hh; dx; d_rri and d _hhi denotes any kinematically
admissible functional representations of the corresponding quantities.
Superimposed double dots represent second-order material time derivative, that is
�uu ˆ d2u=dt2; D is the symmetric continuum rate of deformation,
r : dD ˆ ¼¬ dD ¬ ˆ sym r : dD, with sym r ˆ …r ‡ rT†=2 being the symmetric part
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of r; b· d _uu ˆ b¬ d _uu¬ (¬;  ˆ 1; 2; 3; summation over repeated indices ¬ and  is
implied); w is the spatial gradient of the angular velocity x of the continuum rotation
®eld, that is w ˆ qx=qx. Note that

x ˆ dual W ‡ _hh; …5†

with the ®rst part due to the vorticity or spin of the particle velocity ®eld and the
second part due to the self-spin of the atoms. W is the spin tensor or the skew-
symmetric part of the spatial gradient of velocity q _uu=qx, dual W denotes the dual
vector of W, and _hh…x† is a continuum interpretation (through interpolation) of the
self-spin rate _hhi of the atoms. More details on this quantity will be given later. Also,
in the above equation, mi is the mass and li is the moment of inertia of particle i. If
the mass distribution of i is spherically symmetric around its centre ri, li is isotropic,
that is li ˆ liI, where I is the second-order identity tensor. Here, the need to use the
rate dD of deformation or the symmetric part of the spatial gradient of virtual
velocity q…d _uu†=qx without its skew-symmetric part dW to evaluate the virtual
work rate results from the coupling between the stress and couple stress (Malvern
1969). The relevance of the skew-symmetric part of r, or skew r ˆ …r ¡ rT†=2, will
be discussed later.

To develop a scalable representation of the equivalent continuum, consider a
volume element V e with closed surface Se associated with a subset of M … 4 N†
particles in the ensemble. Assume that MS out of the M particles …MS 4 M† are
on surface Se, therefore de®ning it. The remaining M ¡ MS particles are in the
interior of V e and are considered as internal particles for V e. To de®ne the momen-
tum- and work-conserving stress r…e†, couple stress l…e†, surface traction t…e†, surface

moment mS…e†
, body force b…e†, body moment mb…e†

, mass density »…e†…x† and moment
of inertia density l…e†…x† over Ve, the variational principle of (4) is applied to this
portion of the system, yielding

¡
…

Ve

r…e† : dD…e† dV ¡
…

Ve

l…e† : dw…e† dV ‡
…

Ve

b…e†· d _uu…e† dV ‡
…

Ve

mb…e†
· dx…e† dV

‡
…

Se

t…e†· d _uu…e† dS ‡
…

Se

mS…e†
· dx…e† dS

ˆ
XM

Iˆ1

fint
I · d _uuI ‡

XM

Iˆ1

fext
I · d _uuI ‡

XM

Iˆ1

mint
I · d _hhI ‡

XM

Iˆ1

mext
I · d _hhI

ˆ
…

Ve

»…e† �uu…e†· d _uu…e† dV ‡
…

Ve

l…e†· �hh…e†· d _hh…e† dV

ˆ
XM

Iˆ1

&ImI �rrI · d_rrI ‡
XM

Iˆ1

&I lI · �hhI · d _hhI : …6†

Here, the subscript I denotes particle index internal to the volume element V e

(1 4 I 4 M). Each atom inside Ve is given two indices, one is the local index I
(1 4 I 4 M) and the other is its global index i (1 4 i 4 N) as the atom is also part
of the complete system V. Since a unique correspondence between I and its global
counterpart i can be established, we use them interchangeably here for convenience
of discussion. Under this notation, `j 6ˆ I ’ and `j ˆ I ’ should be interpreted, as `j 6ˆ i’
and `j ˆ i’ respectively. For example, `j ˆ I’ should be read as `the particle with
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global index j and the particle with local index I (and therefore global index i) are the
same particle’.

This notation is used here to delineate the total force f int
I and total moment mint

I

on atom I in Ve exerted by other atoms also inside Ve (either in the interior of Ve or
on the surface Se) and the force f ext

I and moment mext
I that are exerted by atoms or

agents outside Ve. A distinction must be made between these internal and external
interactions. Note that the total force and moment on I are fI ˆ f int

I ‡ f ext
I and

mI ˆ mint
I ‡ mext

I respectively, and

f int
I ˆ

XM

J 6ˆI

²IJ fIJ ;

f ext
I ˆ

XN

j;…J 6ˆ1;2;...M†
fIj ‡ f 0

I ;

mint
I ˆ

XM

J 6ˆI

²IJmIJ ;

mext
I ˆ

XN

j;…J 6ˆ1;2;...M†
mIj ‡ m0

I :

…7†

Here, ²IJ is the fraction of the atomic bond that is spatially within element Ve. It
pertains to the bond between atoms I and J that are both inside Ve. In general, when
atoms are randomly distributed, ²IJ is determined by the dihedral angle of the
element as a fraction of the sum of such angles (360° or less) of all elements asso-
ciated with the particular bond. Consider, for example, the bcc lattice in ®gure 2. The
bond between atoms 1 and 3 is shared by four tetrahedral cells (each of the four
tetrahedral cells is considered a volume element Ve with M ˆ 4). Therefore, for the
tetrahedral element de®ned by atoms 1, 2, 3 and 4 (and for each of the other three
cells) ² ˆ 90°=360° ˆ 0:25 for this bond. For bonds on surface Se (both atoms of
the bond are on Se), the sum of such angles is less than 360°. &I in equation (6) is the
fraction of atom I that is attributed to element Ve. For example, atom 1 in ®gure 2 is
shared by 24 tetrahedral elements; therefore, & ˆ 1=24 for each element.
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The continuum quantities r…e†, l…e†, t…e†, mS…e†
, b…e†, mb…e†

, _uu…e†, D…e†, x…e†, w…e†, _hh…e†,
�hh…e†, »…e† and l…e† in equation (4) are associated with element Ve. It is important to
point out that non-local e� ects, multiple interactions, and the need to maintain
momentum and work equivalence, in general, will cause di� erent volume elements
Ve to overlap partly. This issue necessitates proper superposition of these elemental
quantities to obtain the total ®elds for r, l, t, mS , b, mb, _uu, D, x, w, _hh, �hh, » and l.
More details will be given in §§ 2.2±2.4. In the limit that Ve is taken to be V , the
global ®elds are obtained directly and no superposition is needed. The use of Ve < V
has two clear bene®ts. One is that it allows size e� ects to be analysed. The other is
that the analysis with a smaller V e is more computationally e� cient, and simpler
shape functions can be used.

With the above notation, the requirements that the virtual work rates of internal,
external and inertial forces and moments are equal can then be written as

¡
…

V e

r…e† : dD…e† dV ¡
…

Ve

l…e† : dw…e† dV ˆ
XM

Iˆ1

f int
I · d _uuI ‡

XM

Iˆ1

mint
I · d _hhI ;

…

Se

t…e†· d _uu…e† dS ‡
…

Se

mS…e†
· dx…e† dS ˆ

XMS

Iˆ1

…1 ¡ µI †f ext
I · d _uuI ‡

XMS

Iˆ1

…1 ¡ µI †mext
I · d _hhI ;

…

V e

b…e†· d _uu…e† dV ‡
…

Ve

mb…e†
· dx…e† dV ˆ

XM

Iˆ1

µI f
ext
I · d _uuI ‡

XM

Iˆ1

µI mext
I · d _hhI ;

…

V e

»…e† �uu…e†· d _uu…e† dV ‡
…

V e

l…e†· �hh…e† · d _hh…e† dV ˆ
XM

Iˆ1

&ImI �rrI · d_rrI ‡
XM

Iˆ1

&I lI · �hhI

¡
· d _hhI :

…8†

The second relation concerns the surface traction and surface moment. The corre-
sponding summation is over only the MS particles on surface Se. The third relation
concerns the body force and body moment due to external forces and moments.
External forces on atoms in the interior of Ve contribute only to the body force
density b…e†; therefore, the factor µI is always taken as unity (µI ˆ 1) for atoms in the
interior of Ve. The external forces exerted on atoms on surface Se are considered to
contribute solely to the surface traction t…e†; therefore, µI ˆ 0 for atoms on Se. This
partition is somewhat arbitrary and, indeed, any choice 0 4 µI 4 1 for surface atoms
(together with µI ˆ 1 for interior atoms) will allow external work rate to be pre-
served. However, the choice of µI ˆ 0 for surface atoms (together with µI ˆ 1 for
interior atoms) has the clear advantage of yielding zero body force density and zero
body moment density as non-local external forces become zero. This outcome is
consistent with local continuum theories.

The above delineation of external forces and moments is related to non-local

interatomic interactions and is important for the de®nition of r…e†; l…e†; b…e†; mb…e†
; t…e†

and mS…e†
. It allows the length scale dependence of nanoscale atomic behaviour due

to non-local interatomic interactions to be quanti®ed as the size of Ve (and therefore
the number M of atoms contained) is increased or decreased.

2.2. Stress and couple stress ®elds
We ®rst focus the discussion on the internal work rate and the ®rst relation of

equation (8) for stress and couple stress. To evaluate the continuum version of the
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virtual work, an interpolation for the virtual velocity and virtual angular velocity
associated with the self-spin of atoms in Ve is needed. Many possible methods for the
interpolation are available. One utilizes the shape functions of ®nite elements, that is

d _uu…e†…x† ˆ
XM

Iˆ1

NI …x† d _uuI ;

d _hh…e†…x† ˆ
XM

Iˆ1

NI …x† d _hhI ;

…9†

where NI …x† are the shape functions and should be interpreted as N
…e†
I …x†. The

superscript (e) is omitted for brevity. Details regarding these shape functions can
be found in ®nite-element method texts. The corresponding virtual velocity gradient
and virtual angular velocity gradient contributions respectively associated with the
self-spin of atoms are

qd… _uu…e††
qx

ˆ
XM

Iˆ1

d _uuI

qNI

qx
ˆ

XM

Iˆ1

d _uuI BI ;

q…d _hh…e††
qx

ˆ
XM

Iˆ1

d _hhI

qNI

qx
ˆ

XM

Iˆ1

d _hhI BI :

…10†

Here, BI ˆ qNI …x†=qx are gradients of the shape functions and denotes the tensor
product of two vectors. The virtual rate of deformation and spin tensor respectively
associated with the particle velocity ®eld are

dD…e† ˆ 1

2

q…d _uu…e††
qx

‡ q…d _uu…e††
qx

Á !T
2

4

3

5 ˆ 1
2

XM

Iˆ1

d _uuI BI ‡ BI d _uuI… †;

dW…e† ˆ 1

2

q…d _uu…e††
qx

¡ qd _uu…e†

qx

Á !T
2

4

3

5 ˆ 1
2

XM

Iˆ1

d _uuI BI ¡ BI d _uuI… †:

…11†

The virtual work rate of the stress tensor with respect to the virtual rate of deforma-
tion is given by

…

Ve

r…e† : dD…e† dV ˆ
…

V e

1
2

r…e†T ‡ r…e† :
XM

Iˆ1

BI d _uuI… † dV

ˆ
XM

Iˆ1

…

Ve

sym r…e†· BI · d _uuI dV : …12†

In order to calculate the virtual work rate of the couple stress l…e† : dw…e†, note that
dw ˆ q…dx†=qx ˆ q dual dW ‡ d _hh…x† =qx, with the ®rst part arising from the rota-
tion of the particle velocity ®eld and the second part due to the self-spin of the atoms.
In component form,
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dw
…e†
¬¶

ˆ qdx…e†

qx

Á !

¬¶

ˆ 1
2 "¬ ®dW

…e†
® ;¶ ‡ q…d _hh…e††

qx

Á !

¬¶

ˆ 1
2

XM

Iˆ1

1
2 "¬ ® duI

®BI
 ;¶ ¡ duI

 BI
®;¶

¡
‡

XM

Iˆ1

d _hhI BI

Á !

¬¶

ˆ 1
2

XM

Iˆ1

"¬ ®duI
®BI

 ;¶ ‡
XM

Iˆ1

d _³³I
¬BI

¶ ˆ
XM

Iˆ1

HI
¬¶®duI

® ‡ d _hhI
¬BI

¶; …13†

where the Greek subscripts range from 1 to 3, denoting components associated with
the three Cartesian coordinates. Summation is implied on repeated Greek indices.
The subscript following a comma denotes partial di� erentiation with respect to the
corresponding spatial coordinate, that is dW

…e†

® ;¶ ˆ q…dW …e†
® †=qx¶. Although it has so

far been and will continue to be written as a subscript, the index I is interchangeably
written as a superscript in a few terms in the above equation. This temporary inter-
change in index positions is used to avoid confusion, without altering its meaning.
The virtual work rate of the couple stress is

l…e† : dw…e† ˆ ·
…e†
¶¬dw

…e†
¬¶

ˆ l…e† : HI · d _uuI ‡ l…e†T· BI · d _hhI ; …14†

where HI (I ˆ 1; 2; . . . ; M) are third-order tensors which involve a second-order
spatial di� erentiation. They measure the rotation e� ects of shape functions. The
components of HI are HI

¬¶® ˆ "¬ ®BI
 ;¶, with "¬ ® being the permutation symbol.

Since d _hhI and d _uuI are completely arbitrary and independent degrees of freedom,
the ®rst relations of equations (8), equation (12) and equation (14) lead to

…

Ve

sym r…e†· BI dV ‡
…

V e

l…e† : HI dV ˆ ¡f int
I ;

…

Ve

l…e†T· BI dV ˆ ¡mint
I :

…15†

Since f int
I and mint

I are internal forces, Newton’s third law implies that

XM

Iˆ1

f int
I ˆ 0;

XM

Iˆ1

rI f int
I ˆ 0;

XM

Iˆ1

mint
I ˆ 0: …16†

Note that one of the basic requirements for shape functions is
PM

Iˆ1 NI ˆ 1; there-
fore,

PM
Iˆ1 BI ˆ 0 and

PM
Iˆ1 HI ˆ 0. In general, for an element V e with M atoms,

equations (15) and (16) yield 6M ¡ 9 independent equations. Since the number of
independent components in sym r…e† is six and the number of independent compo-
nents in l is nine, the problem of ®nding the constant average sym r…e† and l…e† is
overspeci®ed for any choice of M greater than four. Consequently, it is impossible to
®nd the average work-equivalent stress and couple stress over the volume associated
with an arbitrary subset of the particle ensemble. Although it may be desirable to do
so, such a task is not possible because of the disparate number of degrees of freedom
(DOFs) for the discrete particle subset and the ®xed dimensional order of the stress
and couple stress tensors. Parity in the DOFs and the order of the stress tensor
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occurs (15 equations and 15 unknown stress and couple stress components) only for
the simplest three-dimensional (3D) cell, the tetrahedron which is associated with
four particles. In two dimensions, triangles associated with three atoms are the only
possible choice (seven equations and seven independent unknown stress and couple
stress components). This particular level of continuum characterization is very useful
because it fully recognizes the e� ects of heterogeneities and steep gradients at the
scale of individual atoms. This process of establishing dynamical equivalence
between the continuum and MD formulations, although performed on interatomic
scales, is also very important because it yields the lowest-scale continuum ®elds that
may be subsequently subjected to various treatments of continuum averaging,
including those of statistical mechanics.

It is important to point out that, for M > 4 in three dimensions and M > 3 in
two dimensions, equation (15) requires, in general, spatially varying stress and
couple stress ®elds for which quadratic or higher-order shape functions should be
used in equation (9). The determination of r…e† and l…e† for V e with such higher
numbers M of atoms necessitates proper choice of integration points in Ve for
appropriate numbers of unknowns. Although somewhat more computationally
involved, such a pursuit would be quite useful and important since it permits scaling
and allows size e� ects to be quanti®ed through the variation of the size of Ve.

Note that for central force systems, mint
I ˆ 0, therefore, the second relation of

equations (15) becomes a system of homogeneous equations, yielding l…e† ˆ 0.
Under such conditions, r…e† ˆ r…e†T and the more commonly used non-polar stress
theory is recovered. This result demonstrates that, at the atomic level, couple stress is
the manifestation of interatomic moment interaction. The atomistic origin of couple
stress requires the existence of interatomic couples. A material with interatomic
couples should be considered as intrinsically endowed with couple stress on all length
scales at or above interatomic levels. It is worthwhile to point out that the introduc-
tion of couple stress based on higher length scale considerations, such as the example
by KroÈ ner (1963) of spatially uniform arrays of edge dislocations of like sign, is a
result of interactions of heterogeneities as depends on their mesoscopic arrangement.
The length scale associated with these couples is associated with the dislocation
spacing in KroÈ ner’s example. The couple stresses are determined from higher-
order moments of the surface traction acting on periodic unit cells representing a
uniform array of dislocations. Of course the scale over which such couple stresses are
generated is relatively large compared with the interatomic spacing, in general, and
they arise in KroÈ ner’s setting independent of considerations of interatomic moments.
They can exist even for materials that are non-polar on the interatomic scale. It is
worthwhile to point out that the introduction of couple stress based on such higher-
length-scale considerations represents averaging and reinterpretation of non-polar
stress ®elds. Such averaging is conducted over ®nite volumes whose size scales arise
from considerations unrelated to the atomistic origin of the couple stress. Although
useful above their respective length scales where the primal e� ects of couple stress
are realized, such theories invariably do not consider the question of whether the
atomistic force ®eld of a material induces distributed moments. Clearly, for non-
polar materials, the use of such theories is not supported by the atomistic work
equivalence consideration here. Rather, they should be considered as higher-scale
theories motivated by independent scaling considerations. The interpretation of their
results should be maintained on or above the size scale over which average moments
are evaluated.
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So far, only the symmetric part of r…e† has been speci®ed. To obtain the skew-
symmetric part, we invoke the balance of angular momentum for micropolar con-
tinua, which relates skew r…e† with l…e†, in the form (Malvern 1969)

…skew r…e††¬
ˆ 1

2 "®¬ …l…e†
®¶

�³³
…e†
¶ ¡ ·

…e†
¶®;¶ ¡ mb…e†

® †; …17†

where summation is implied over repeated indices. �³³
…e†
¶ ; ·

…e†

¶®;¶; l
…e†
®¶ and mb…e†

® are com-
ponents of �hh…e†…x† ˆ PM

Iˆ1 NI …x† �hhI , r· l…e†, l…e† and mb…e† respectively. The ®rst two of
these four have been speci®ed already. The continuum body moment density mb…e†

will be speci®ed in § 2.3 and the relations for the moment l…e† of inertia will be given in
§ 2.4.

Di� erent volume elements Ve chosen for stress and couple stress calculation
occupy di� erent spatial regions and are of di� erent shapes and sizes. In general,
owing to multiple and non-local atomic interactions, these elements partly overlap.
A two-dimensional (2D) illustration of this issue is given in ®gure 3. Assume that the
cut-o� radius (the interatomic distance beyond which direct interaction between two
atoms is essentially negligible) for the material is Rc. For atom A in ®gure 3 (a),
interactions with eight other atoms must be considered. Speci®cally, forces on A due
to atoms B, C and D give rise to elements ABC and ACD among other elements
(note that only a portion of the forces may be considered in each triangle, as indi-
cated in equation (7)). For atom D, a similar cut-o� circle must be drawn and
triangles DAB and DBC must be analysed among others. Since these four elements
partly overlap and do not coincide, the superposition of the stress sub®elds varies for
each spatial location in V.

In equation (4), the summation for the virtual work must be performed over all
interatomic bonds (i ˆ 1; 2; . . . ; N) on the discrete side and over all elements on the
continuum side to ensure equality of virtual work. The elemental stress r…e†…x† and
couple stress l…e†…x† at a position x combine to give rise to the Cauchy stress ®eld
r…x† and couple stress ®eld l…x† respectively in V, as

r…x† ˆ
X

e

r…e†…x†; l…x† ˆ
X

e

l…e†…x†; …18†

where the superposition is carried out for each x with all elements that contain that
point.
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The deformation ®eld quantities that are work conjugate to the stress and couple
stress ®elds in equation (18) are given by

D ¬ ˆ
P

e sym ¼
…e†
¬ D

…e†
 ¬

P
e sym ¼

…e†
¬

; W ¬ ˆ
P

e skew ¼
…e†
¬ W

…e†
 ¬

P
e skew ¼

…e†
¬

; w ¬ ˆ
P

e ·
…e†
¬ w

…e†
 ¬

P
e ·

…e†
¬

; …19†

where summation is not implied over repeated indices ¬ and  . In the limit when
Ve ˆ V , there is only one element and r…e†…x† ˆ r…x†, l…e†…x† ˆ l…x†,
q _uu=qx… †…e† ˆ q _uu=qx and w…e† ˆ w, therefore, no superposition is needed.

A discussion is in order for situations involving multiple atoms lying on a radial
line within the cut-o� sphere, as illustrated in ®gure 3 (b). Although such situations
may warrant a di� erent treatment of the interatomic interactions in quantum phy-
sics, classical interatomic potentials do not a� ord a special treatment of the inter-
atomic forces. The equivalence of continuum-particl e system virtual work can be
maintained through a simple rede®nition of the elements. For example, in ®gure 3 (b)
the consistency can be maintained through the consideration of elements ABD,
ABE, ACD and ACE together with proper sharing of the forces and moments
between AD and AE.

2.3. Traction, surface moment, body force and body moment
To obtain the traction over the surface area Se (S) of V e (V), consider a surface

element S Se (or S S) de®ned by L particles. The virtual velocity and virtual
angular velocity respectively over S are

d _uu…e†…x† ˆ
XL

Iˆ1

NI …x† d _uuI ;

dx…e†…x† ˆ
XL

Iˆ1

RI · d _uuI ‡ NI …x† d _hhI ;

…20†

where RI is a skew-symmetric tensor with R¬® ˆ "¬ ®B (summation is implied over
repeated index  ). Substitution into the second relation of equation (8) yields

XL

Iˆ1

…

S

NI …x†t…e†…x† dS· d _uuI ‡
XL

Iˆ1

…

S

mS…e†…x†· RI dS· d _uuI

‡
XL

Iˆ1

…

S

NI …x†mS…e†…x† dS· d _hhI

ˆ
XL

Iˆ1

¹I 1 ¡ µI… †f ext
I · d _uuI‡

XL

Iˆ1

¹I 1 ¡ µI… †mext
I · d _hhI ; …21†

where ¹I is the fraction of 1 ¡ µI… †f ext
I and 1 ¡ µI… †mext

I that can be attributed to S,
since S may be only a portion of Se and particle I may be on the boundary of S
(shared by the rest of Se). Again, the arbitrariness of d _uuI and d _hhI requires that
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…

S

NI …x†t…e†…x† dS ‡
…

S

mS…e†…x†· RI dS ˆ ¹I 1 ¡ µI… †f ext
I ;

…

S

NI …x†mS…e†…x† dS ˆ ¹I 1 ¡ µI… †mext
I ;

…22†

with I ˆ 1; 2; . . . ; L. The solution to the above is

t…e†…x† ˆ
XL

Jˆ1

NJ…x†kJ ;

mS…e†…x† ˆ
XL

Jˆ1

NJ…x†vJ ;

…23†

where kJ and vJ are vector solutions of the linear systems of equations in the forms

XL

Jˆ1

cIJkJ ˆ ¹I 1 ¡ µI… †f ext
I ¡

…

S

mS…e†…x†· RI dS;

XL

Jˆ1

cIJvJ ˆ ¹I 1 ¡ µI… †mext
I :

…24†

In the above equations, cIJ ˆ „
S

NI …x†NJ…x† dS, with I ; J ˆ 1; 2; . . . ; L. The
simplest case is that of triangular surface areas with L ˆ 3.

If S resides on the surfaces of two or more elements, the total traction and
moment respectively are

t…x† ˆ
X

e

t…e†;

mS…x† ˆ
X

e

mS…e†:

…25†

To obtain the body force density b and body moment density mb, consider the
volume element V e de®ned by M particles. The equations are

…

Ve

NI …x†b…e†…x† dV ‡
…

Ve

mb…e†…x†· RI dV ˆ µI f
ext
I ;

…

Ve

NI …x†mb…e†…x† dV ˆ µIm
ext
I ;

…26†

where µI ˆ 1 for atoms in the interior of Ve and µI ˆ 0 for particles on the surface
Se of Ve. The solutions are

b…e†…x† ˆ
XM

Jˆ1

NJ…x†nJ ;

mb…e†…x† ˆ
XM

Jˆ1

NJ…x†pJ ;

…27†

where nJ and pJ are the vector solutions of the linear system of equations in the
forms of
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XM

Jˆ1

dIJnJ ˆ µI f
ext
I ¡

…

V

mb…e†…x†· RI dV ;

XM

Jˆ1

dIJpJ ˆ µIm
ext
I :

…28†

In the above relations, dIJ ˆ „
V e NI …x†NJ…x† dV , with I; J ˆ 1; 2; . . . ; M. The sim-

plest case is tetrahedral regions with M ˆ 4.
Because of the same considerations as in equation (18), the elemental body force

and moment of inertia contributions obtained above combine to yield the total body
force density and body moment density respectively as

b…x† ˆ
X

e

b…e†…x†; mb…x† ˆ
X

e

mb…e†…x†: …29†

The deformation ®eld quantities that are work conjugate to the above quantities are

_uu¬ ˆ
P

e b…e†
¬ _uu…e†

¬P
e b…e†

¬

; !¬ ˆ
P

e mb…e†
¬ !…e†

¬P
e mb…e†

¬

; …30†

where summation is not implied over repeated index ¬.

2.4. Mass and moment of inertia distributions of equivalent continuum
The equality of the continuum virtual work and atomic virtual work associated

with inertia forces in the last relation of equations (8) speci®es the distributions of
mass and moment of inertia of the equivalent continuum. We can express these
elemental densities in terms of the shape functions as

»…e†…x† ˆ
XM

Kˆ1

NK …x†gK ;

l…e†…x† ˆ
XM

Kˆ1

NK …x†hK ;

…31†

where gK and hK …K ˆ 1; 2; . . . ; M† are scalar and tensorial constants respectively to
be determined. Substitution of

d _hh…e†…x† ˆ
XM

Iˆ1

NI …x† d _hhI ;

�hh…e†…x† ˆ
XM

Jˆ1

NJ…x† �hhJ ;

…32†

into the last relation of equation (8) yields
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XM

Iˆ1

XM

Jˆ1

…

Ve

»…e†…x†NI …x†NJ…x† �uuJ

h i
dV · d _uuI

‡
XM

Iˆ1

XM

Jˆ1

…

Ve

l…e†…x†NI…x†NJ…x† �hhJ

h i
dV · d _hhI

ˆ
XM

Iˆ1

&ImI �uuI · d _uuI‡
XM

Iˆ1

&I lI �hhI · d _hhI : …33†

The arbitrariness of d _uuI and d _hhI requires that

XM

Jˆ1

…

V e

»…e†…x†NI …x†NJ…x† �uuJ

h i
dV ˆ &ImI �uuI ;

XM

Jˆ1

…

V e

l…e†…x†NI …x†NJ…x† �hhJ

h i
dV ˆ &I lI �hhI :

…34†

Summation of the M equations in each of the above systems and the independence of

»…e† and l…e† on �uuI and �hhI yields

…

Ve

»…e†…x†NI …x†
h i

dV ˆ &ImI ;

…

Ve

l…e†…x†NI …x†
h i

dV ˆ &IlI ;

…35†

where summation is not implied over the repeated index I. Substitution of equations
(31) into equations (35) gives

XM

Kˆ1

dIKgK ˆ &ImI ;

XM

Kˆ1

dIKhK ˆ &I lI :

…36†

These two systems uniquely determine gK and hK respectively, yielding the distribu-
tions of mass »…e†…x† and moment of inertia l…e†…x† of the equivalent continuum
through equations (31). Again, the simplest case corresponds to tetrahedral elements
with M ˆ 4 in three dimensions and triangular regions with M ˆ 3 in two dimen-
sions. Note that the requirement of conservation of mass is satis®ed by equations
(31) and (36).

Accounting for contributions from overlapping elements at a location x, the total
mass and moment of inertia densities respectively are

»…x† ˆ
X

e

»…e†…x†; l…x† ˆ
X

e

l…e†…x†: …37†

The deformation ®eld quantities that are work conjugate to the above quantities, the
velocity ®eld in equation (30) and the angular velocity ®eld _hh are
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�uu¬ ˆ
P

e »…e† �uu…e†
¬ _uu…e†

¬

_uu¬…x†»…x† ; �³³¬ ˆ
P

e l
…e†
 ¬

�³³…e†
¬

_³³
…e†


_³³ …x†l ¬…x†
; …38†

where summation is not implied over repeated index ¬ but is implied over repeated
index  . The angular velocity ®eld is _hh ˆ x ¡ dual W with x being calculated from
equation (30) and W being calculated from equations (19).

We note that in general, for areas where overlap of elements occurs, the defor-
mation ®eld quantities from equations (19), (30) and (38) do not satisfy
D ˆ sym …q _uu=qx†, W ˆ sym …q _uu=qx† and w ˆ qx=qx, even though at the element
level D…e† ˆ sym …q _uu…e†=qx†, W…e† ˆ sym …q _uu…e†=qx) and w…e† ˆ qx…e†=qx are indeed
satis®ed. This situation results from the weighted averaging used to maintain the
work conjugacy of the stress, couple stress body force, body moment, traction and
surface moment. The lack of full consistency with the continuum di� erential require-
ment occurs only on the size scale of the cut-o� radius of the material. Such overlap
a� ects only the boundary region of V e inside Se that has a thickness smaller than or
equal to Rc (see ®gure 4 for the size of overlapping zone between elements V1 and
V2). Locations in the interior of Ve that have distances from Se greater than Rc are
not a� ected by the overlap. As the size of Ve is increased, the e� ect of this lack of
di� erential smoothness decreases. Full consistency is achieved in the limit of Ve ˆ V .
Full consistency is also maintained for loading under which the stress r…e†, couple
stress l…e†, body force density b…e† and body moment density mb…e† are the same in
overlapping elements. It is worthwhile to point out that the use of such superimposed
deformation quantities can also be avoided completely by always placing the loca-
tions of interest fully in the non-overlapping interior of an element. It will be shown
in § 3 that the bene®t of this weighted averaging is that the conservation of internal
and external work rates, conservation of linear and angular momenta, and conserva-
tion of mass are achieved between the equivalent continuum and the discrete particle
system.
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} 3. Work conjugacy and balance of momenta
To obtain the global equivalence of work rates, we replace d _uu by the actual

velocity _uu and d _hh by the actual angular velocity _hh. Equations (8) then become

¡
…

V

r : D dV ¡
…

V

l : w dV ˆ
XN

iˆ1

f int
i · _uui ‡

XN

iˆ1

mint
i · _hhi; …39†

…

V

b· _uu dV ‡
…

V

mb· x dV ‡
…

S

t· _uu dS ‡
…

S

mS· x dS

ˆ
XN

iˆ1

f ext
i · _uui ‡

XN

iˆ1

mext
i · _hhi: …40†

These relations show that the equivalent continuum indeed has the same the internal,
external and inertial work rates.

The equivalent continuum also has the same global linear and angular momenta
as the original particle system. It can be shown that equations (22), (23), (25)±(27),
(29) and (34)±(38) yield

…

S

t dS ‡
…

V

b dV ˆ
XN

iˆ1

f ext
i ˆ

XN

iˆ1

fi ˆ
…

V

» �uu dV ˆ
XN

iˆ1

mi �rri;

…

S

r t dS ‡
…

V

r b dV ‡
…

S

mS dS ‡
…

V

mb dV

ˆ
XN

iˆ1

ri f ext
i ‡

XN

iˆ1

mext
i

ˆ
XN

iˆ1

ri fi ‡
XN

iˆ1

mi

ˆ
…

V

»r �uu dV ‡
…

V

l �hh dV

ˆ
XN

iˆ1

miri �rri ‡
XN

iˆ1

li �hhi:

…41†

Therefore, using the dynamic principle of virtual work, we have de®ned an equiva-
lent continuum which is dynamically consistent with atomic ensembles exhibiting
micropolar interatomic interactions as set forth in MD idealizations of actual ato-
mistic systems. The consistency is in the conservation of internal work rate, external
work rate and work rate due to inertial forces. The ®elds of work-conserving stress,
couple stress, surface traction, surface moment, body force density, body moment
density, mass density and the moment of inertia density are determined together with
a work-conjugate deformation ®eld. The continuum±particle assembly work equality
and momentum equivalence ensure that the continuum interpretation of the discrete
force ®eld maintains the physical e� ects of the particle system at all times. It is
important to point out that the continuum ®elds de®ned here re¯ect an interpreta-
tion of the particle force, moment and deformation over the entire spatial region and
surface occupied by the particle system. The advantage is that regular continuum
averaging, scaling and interpretation are fully allowed. Furthermore, the equivalence
of work rates, kinetic energy, linear momentum and angular momentum holds for
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any ®nite volume element Ve as well as for the entire system. The formulation,
algorithm and results allow a consistent transition from the MD framework to the
continuum framework. The length scale e� ects due to non-local interatomic inter-
actions can be accounted for in this framework of analysis. Since full ®elds of all
fundamental kinetic and kinematic quantities are given, scaling and averaging can be
carried out.

} 4. Discussion
The entire analysis here is carried out on the current deformed con®guration;

therefore, r; l; b; mb; t and mS represent force (moment) per unit area or per unit
volume in the deformed con®guration. In particular, r is the Cauchy stress in the
general context of micropolar continuum. This is both convenient and necessary.
The evaluation of the corresponding kinetic quantities (e.g. the ®rst Piola±Kirchho�
stress) in any non-deforming reference con®guration is, in general, not possible
owing to the rearrangement of discrete atoms. This di� culty results from a funda-
mental di� erence between discrete particle models and continuum models.
Speci®cally, particle rearrangement renders the determinant of the deformation gra-
dient F ˆ qx=qX to be non-positive (det F 4 0), a situation not permitted in con-
tinuum mechanics. Also, since x is the current position of the particles, the shape
functions NI , their gradients BI , and tensors HI must be evaluated at each time step
for which the equivalent continuum is to be determined.

The framework of analysis taken here admits an explicit account of arbitrary
atomic arrangement. Hence, applications to crystalline or amorphous structures are
equally valid. The analysis also applies to both homogeneous materials with identical
atoms and heterogeneous materials with dissimilar atoms, under the condition that
appropriate atomic potentials of the form in equation (1) are used.

} 5. Non-polar materials
For non-polar materials (materials that do not contain electric dipoles at the

individual atom level), the dependence on hij of E in equation (1) vanishes; therefore,
mij ˆ 0, mi ˆ 0, mint

I ˆ 0 and mext
I ˆ 0 and, consequently, only the central forces fij

and fi exist. Under such conditions, the second relation of equations (15) speci®es
that l ˆ 0, equations (23) and (24) yield mS…x† ˆ 0, and equations (27) and (28)
yield mb…x† ˆ 0. The absence of interatomic moment interactions also removes the
coupling between linear and angular momenta. Although self-spins of atoms may
still exist, they are totally decoupled from atom to atom, from the central force
interactions and from the e� ects of central forces due to external atoms or other
external agents and are, therefore, inconsequential to the theory in their case. The
angular velocity of atoms will remain unchanged throughout the history of deforma-
tion. These materials do not possess moments of inertia at the continuum level, that
is l…x† ˆ 0. Under such conditions, the equations for determining elemental stress
r…e† (note that r…e† ˆ r…e†T for non-polar materials in the absence of l…e†), traction t…e†,
body force density b and mass density »…e†…x† are as follows.

(i) Stress over Ve containing M atoms:
…

Ve

r…e†· BI dV ˆ ¡f int
I ; I ˆ 1; 2; . . . ; M: …42†

(ii) Traction over Se de®ned by L atoms on a surface:
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t…e†…x† ˆ
XL

Jˆ1

NJ…x†kJ ; …43†

where kJ are the vector solutions of

XL

Jˆ1

cIJkJ ˆ ¹I 1 ¡ µI… †f ext
I ; cIJ ˆ

…

S

NI …x†NJ…x† dS; I ; J ˆ 1; 2; . . . ; L: …44†

(iii) Body force density over Ve containing M atoms:

b…e†…x† ˆ
XM

Jˆ1

NJ…x†nJ ; …45†

where nJ are the solutions of

XM

Jˆ1

dIJnJ ˆ µI f
ext
I ; dIJ ˆ

…

Ve

NI …x†NJ…x† dV ; I ; J ˆ 1; 2; . . . ; M: …46†

(iv) Mass density over Ve containing M atoms:

»…e†…x† ˆ
XM

Kˆ1

NK …x†gK ; …47†

where gK are solutions of

XM

Kˆ1

dIK gK ˆ &ImI ; I ˆ 1; 2; . . . ; M: …48†

It is noted that the non-polar materials referred to here include those that admit
interactions that show dependence on dihedral angles between bonds in a lattice
assembly for which the MEAM was developed. Such interatomic interactions are
of the central force type and no interatomic moments are involved.

} 6. Example: uniform tension of a non-polar material
Consider the uniform tension under external force f 0 of a non-polar lattice in

®gure 5. The initial square lattice constant is a0. The deformed lattice has dimensions
a and b in the horizontal and vertical directions respectively. The material is homo-
geneous and the mass of each atom is m. For simplicity, assume that the cut-o�
radius Rc is such that a < Rc < 2a and b < Rc < 2b; therefore, non-local interactions
do not occur. Since the couple stress is not involved and triangular elements are
considered, the calculation here uses the 2D linear shape functions given in appendix
A. Results of the continuum interpretation of the interatomic potential solutions are
listed in table 1. The problem considered is fully dynamic; therefore, the interatomic
forces can vary with time and in the vertical direction (i.e. f12 ˆ f12…x; t†,
f13 ˆ f13…x; t† and f32 ˆ f32…x; t†) while they are uniform in the horizontal direction.
At the upper boundary, f 0 ˆ f12 ‡ 2f13 cos Y and ¼22 ˆ f 0=a ˆ … f12 ‡ 2f13 cos Y†=a.
This is consistent with the continuum solution of traction at the boundary and the
continuum expectation of uniform stress in the horizontal direction. The rate of
deformation, body force density, boundary traction and mass density in table 1
are also in complete agreement with continuum mechanics expectations.
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The virial stress (Tsai 1979, Rowlinson and Widom 1982) at ri is

ˆ 1 ¡mi _uui _uui ‡ 1
2

X

j…6 î†
rij fij

0

@

1

A: …49†
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Table 1. Equivalent continuum ®elds for uniform tension of a non-polar lattice (m is the
mass of each atom).

Element Stress, rate of deformation, body force density and mass density

1±2±3 r…e† ˆ f32=2 ‡ f13 sin Y… †=b …¡f13 sin Y†=a

¡… f13 sin Y†=a f12=2 ‡ f13 cos Y… †=a

D…e† ˆ _aa=a 0

0 _bb=b
, W…e† ˆ 0

b…e†…x† ˆ 0

»…e†…x† ˆ m=2ab

1±3±4 r…e† ˆ f32=2 ‡ f13 sin Y… †=b ¡… f13 sin Y†=a

…¡f13 sin Y†=a f12=2 ‡ f13 cosY… †=a

D…e† ˆ _aa=a 0

0 _bb=b
, W…e† ˆ 0

b…e†…x† ˆ 0

»…e†…x† ˆ m=2ab

1±2±4 r…e† ˆ f32=2 ‡ f13 sin Y… †=b … f13 sinY†=a

… f13 sin Y†=a f12=2 ‡ f13 cosY… †=a
,

D…e† ˆ _aa=a 0

0 _bb=b
, W…e† ˆ 0

b…e†…x† ˆ 0, »…e†…x† ˆ m=2ab

2±3±4 r…e† ˆ f32=2 ‡ f13 sin Y… †=b … f13 sinY†=a

… f13 sin Y†=a f12=2 ‡ f13 cosY… †=a
,

D…e† ˆ _aa=a 0

0 _bb=b
, W…e† ˆ 0

b…e†…x† ˆ 0

»…e†…x† ˆ m=2ab

Overall r ˆ f32 ‡ 2f13 sin Y… †=b 0

0 f12 ‡ 2f13 cosY… †=a

D ˆ _aa=a 0

0 _bb=b
, W ˆ 0,

b…x† ˆ 0

t…x ˆ upper and lower boundaries† ˆ t 0 ˆ f 0=a

»…x; t† ˆ m=ab



Here, tensile stresses are de®ned as positive, therefore, qF=qrij > 0 if fij is attractive
in equation (2). O is a proper choice of volume associated with atom i and summa-
tion is not implied over repeated indices. For atomic ensembles with irregular atom
positions, the choice of O is not obvious and can be ambiguous. In the current
example, however, the regular shape and periodicity of the rectangular lattice allows

O to be identi®ed as the volume (or area) of the unit cell, that is O ˆ ab. The
mechanical part (second term) of the virial stress for the problem in ®gure 5
matches the solution in table 1. This agreement occurs because of the simple geo-
metry of the problem, the uniformity of loading and the absence of non-local inter-
actions.

A proper perspective is in order here. In general, the current stress and the virial
stress do not coincide because of their clearly di� erent de®nitions. Both stresses are
measured relative to the equilibrium con®guration of a particle system. The stress
de®ned here always makes the same work contribution to deformation as the inter-
particle force system over any ®nite volume element while the virial stress does not.
Indeed, the virial stress is de®ned without regard to any possible work-conjugate
deformation ®eld. A detailed discussion on the virial stress has been given by Zhou
(2001). The calculation of the current stress does not involve ad hoc speci®cation of a
relevant volume. The evaluation of the virial stress for any set of atoms requires the
identi®cation of a proper O whose extent is not always obvious. In the example in
®gure 5, the overall deformation is homogeneous across di� erent unit cells and
periodicity of the lattice is maintained. In addition, locality of interatomic forces
is assumed through the choice of the relatively small cut-o� radius. Therefore, O can
be taken as the volume of the unit cell. Under conditions of arbitrary and inhomo-
geneous deformations , the identi®cation of O is ambiguous and somewhat uncertain.
The virial stress contains a kinetic energy term (the ®rst term in equation (49)). This
term represents a statistical mechanics characterization of the e� ects of kinetic
energy of atomic particles on the apparent traction on a spatial plane that is external
to the particle system. It is not related to the internal mechanical interaction between
particles (or material points). Clearly, it should not have (and, indeed, it does not

2568 M. Zhou and D. L. McDowell

Figure 5. Uniform tension of a 2D lattice and continuum equivalent.



have) a part in the dynamically work- and momentum-conserving de®nition of stress
which is a measure of internal interactions between material points. More detailed
analyses of the virial stress are given in Zhou (2001, 2002). In the current analysis,
the e� ects of kinetic energy on motion and deformation are properly accounted for
by the continuum deformation ®elds and by the mass distribution. In summary, the
virial stress does not represent the dynamically equivalent medium in the same sense
as the Cauchy stress in this paper. Moreover, it is relatively insensitive to local
heterogeneity if computed over some substantial volume.

} 7. Conclusion
An equivalent polar continuum has been de®ned for dynamically deforming

atomistic systems. For non-polar materials, the resulting Cauchy stress is contrasted
with the commonly used virial stress. It is shown that the Cauchy stress has certain
advantages in speci®city and rigour. The equivalent continuum ®elds here represent
a reinterpretation of the result of a MD calculation. In their present form, these ®elds
have exactly the same number of independent degrees of freedom as the discrete
®elds in the MD system. In the context of multiscale characterization of material
response, this paper may be regarded as o� ering a theoretical basis for `continuu-
mization’ which is the ®rst step in a rigorous averaging process. Subsequent steps
should include `averaging’ and `scaling’. Another potential application of the theo-
retical framework developed here is multiscale computational modelling of material
behaviour which combines both MD and continuum descriptions in the development
of constitutive relations at di� erent scales. This is facilitated by the work-conjugate
deformation and stress ®elds that can be calculated on any desired scale. The equiva-
lent continuum developed here has certain implications. Firstly, it is computationally
quite intensive to obtain the ®elds through a large ensemble of atoms because ele-
ments must be constructed and weighting must be applied. Secondly, the ®elds thus
determined are piecewise continuous, leading to potentially large ¯uctuations among
small groups of atoms. This is an intrinsic feature of dynamic equivalence on inter-
atomic scales and is also a re¯ection of the e� ects of atomic-scale material hetero-
geneity. The resolution of such interatomic features is important for problems
involving heterogeneity and steep gradients of the ®elds, such as interfaces and
crack tips. The ®elds obtained are amenable to continuum treatment, including
averaging. Future work will address the principles of averaging these ®elds over
larger scales in a manner that delivers useful information across length scales.
Such averaging procedures should strive to preserve the dynamical work equivalence
and the attendant statistical mechanics features of the MD solution.

It is worth noting that the approach taken here fully admits non-local atomistic
interactions. The continuum ®elds obtained re¯ect the non-local characteristics of
the MD solutions. For this reason, the superposed solution embodied in equations
(18), (19), (25), (29), (30), (37) and (38) and the solution obtained by taking V ˆ V e

are not identical except for conditions of uniform deformation or uniform loading.
The former preserves global work rates and momenta but lacks general di� erential
compatibility of the kinematic quantities. The latter fully preserves the global work
rates and momenta and satis®es the requirements of kinematic di� erential compat-
ibility. Moreover, such full consistency is also achieved for the Ve de®ned by any
subset of an atomistic system. This consistency on any size scale allows the e� ects of
non-locality and scaling to be quanti®ed within the context of a continuum frame-
work.
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To achieve the dynamic equivalence between the continuum and the particle
system on any size scale, the analysis here involves a systematic delineation of
internal and external interatomic interactions, delineation of surface and body
forces, sharing of a bond by neighbouring elements and distribution of atomic
mass to elements connected to an atom. These processes use the parameters &
(equation (6)), ² (equation (7)), µ (equation (8)) and ¹ (equation (21)). It is impor-
tant to point out that values for these parameters are independent of the dynamic
principle of virtual work (PVW); therefore, they cannot be determined by the PVW
beyond the extent that the sum of each of these parameters be unity for the corre-
sponding bond or atom. Any value in the ranges given earlier for these parameters
will allow the work and momentum equivalence to be maintained. Realistic deter-
mination of the values should depend on material structure, symmetry, quantum-
mechanical description of the spatial shape of the interatomic bonds, and consis-
tency with continuum mechanics expectations on higher scales. The macroscopic
continuum expectation that mass be uniformly distributed (»…x† ˆ constant† for
uniform periodic lattices consisting of identical atoms such as that in ®gure 5 dictates
that, for 3D tetrahedral and 2D triangular elements, &e

I ˆ Ve=
Pk

e V e, with k being
the number of elements connected to atom I. The determination of ¹ should use a
similar consideration for uniform traction distributions on planar surfaces for the
type of shape functions used. Considerations for the determination of µ are fully
given in § 2. It is important to point out that, in the limit of Ve ˆ V and Se ˆ S, the
parameters &, ² and ¹ become unnecessary and irrelevant.

The issue of obtaining a continuum characterization of plasticity due to atomic
rearrangement or con®guration change should not be obscured by the conservative
nature (nonlinear elastic) of interatomic potentials used in molecular dynamics. The
reversibility of atomic reordering and restorability of broken atomic bonds must not
be perceived as to prevent MD models to account for plasticity and dissipation in the
continuum sense. MD and continuum theories have vastly di� erent resolutions for
defects or atomic structure changes. While MD models fully resolve atomic pro-
cesses, continuum formulations typically employ far too few state variables to be
able to capture the dynamical atomic state of the system. Instead, they opt to
characterize the thermodynamic state of the system, a much less ambitious exercise.
Note that defect generation through atomic rearrangement (e.g. dislocations) is the
source of plasticity or dissipation at the continuum level, even though such defects
can be reversed at the atomic level if the right conditions are made available. Such
conditions to return the defect structure to any particular state are very hard to
arrange, owing to the large number of degrees of freedom at the atomic level.
They do not occur under deformations which continuum theories are formulated
to describe. In other words, macroscopic plasticity theories describe processes that
involve changes in defect structures not explicitly accounted for by strain alone. Such
processes do not return a body’s defect structure to its original state even though the
macroscopic strain returns to zero, giving rise to the continuum phenomenological
dissipation. A cycle of macroscopic plastic strain must not be equated with the return
of atomic structures at the MD level. Realistic MD models on the size and time
scales of processes considered by continuum plasticity theories should capture evo-
lution and irreversibility of defect structures. The equivalent continuum is a faithful
representation of the MD system, in terms of work rates, momentum, mass as well as
energy. It naturally characterizes dissipation embedded in the MD models. One of
the issues in the grand challenge of multiscale modeling of material behaviour is to
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devise continuum representations of MD results on di� erent time and length scales
with appropriately reduced numbers of DOFs. One requirement for such develop-
ments is accurate re¯ection of dissipation embedded in the MD results and the
equivalent continuum representation.

The equivalence that we introduce here is de®ned at each time in the Eulerian
sense using the current con®guration and therefore is not a� ected by atomic rear-
rangement. The geometry of the continuum always follows that of the atomic sys-
tem, in essence an updated Lagrangian approach. Full work, momentum, and mass
equivalence is maintained in this process. Additional analysis is needed for a deli-
neation of the phenomena of elasticity and plasticity as expressed in the continuum
setting, but of course they are fully embedded within the MD analyses. The genera-
tion and motion of defects in the MD calculations are highly non-equilibrium dis-
sipative processes and are eventually to be cast in the continuum setting in
appropriate constitutive laws. The equivalent continuum stress or couple stress
and deformation ®elds directly re¯ect the e� ects of interatomic constitutive laws in
the MD formulation. As is the case for experimental measurements of deformation
and stress obtained from laboratory tests, these ®elds can be used to extract appro-
priate continuum constitutive relations. This is an application of the theory
advanced here. It is not an objective of this paper.

The issue of couple stress is intrinsically tied to length scale, and for all scales
above the interatomic is related to a homogenization process in which the hetero-
geneous medium is replaced by an e� ective continuum imbued with additional
microrotational DOFs. Such e� ective media representations are valid only on scales
at or above the characteristic length over which couples or microrotations could
occur as equivalent force or moment distributions as determined from higher-order
moments of the surface traction. Such couple stresses di� er fundamentally from
those associated with interatomic couples. The former can arise from collective
defect distributions by considering higher-order moments of the surface traction
information even for a dynamically equivalent continuum over some ®nite volume
shown in ®gure 1 that is non-polar (l…e† ˆ 0) on the interatomic scale. However, it is
unclear whether such higher-scale couple stresses can have a work conjugate micro-
rotation ®eld that is consistent with the principle of dynamic equivalence applied to a
set of discrete particles as set forth in this paper. In particular, the couple stress and
Cauchy stress in most continuum theories are not de®ned out of the consideration
that they produce an equal amount of internal work on material deformation as
exerted by the original non-polar stress ®eld. It is therefore doubtful that they have a
close connection to results of atomistic solutions.

It is important to recognize that a complete continuum representation for evolu-
tion of point and line defects within the material must also be consistent with the rate
of dissipation, or rate of reduction in free energy density due to irreversible micro-
structure rearrangement. The dynamically equivalent continuum ®elds that we derive
in this paper fully and explicitly embed e� ects of mass and momentum exchange of
defects with the lattice, based on molecular dynamics as the underlying `constitutive
relation’, and hence o� er a dynamically consistent treatment that also reconciles
dissipation. The volume-averaged stress and deformation ®elds in this case comple-
tely re¯ect the statistical aspects of lattice±defect interactions. However, in practice
we often desire to formulate continuum constitutive relations that re¯ect MD results.
When the stress and deformation ®elds are expressed as averages over much higher
length scales, the resulting measures must be augmented in the continuum constitu-
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tive relations by additional variables that represent the collective e� ects of defects,
sometimes called state variables or internal state variables (ISVs). These variables are
either explicit or implicit representations of defect distribution in the higher-scale
continuum setting and evolve with generation and motion of defects or by other
means of microstructure rearrangement (e.g. phase transformations) in a manner
consistent with dissipation over the characteristic averaging volume considered. It is
therefore clear that the need to introduce ISVs arises from scaling considerations of
the dynamically equivalent ®elds, and that additional ISVs are unnecessary in ato-
mistic models because in this case the con®guration of defects is completely pre-
scribed by the position of atoms, and the dissipation by their rate of irreversible
rearrangement. By disposing of the very large number of atomistic DOFs in the
process of averaging the continuum stress and deformation ®elds, and representing
the explicit defect ®elds by lower-order ®eld variables, one would e� ectively move
from a fully dynamic representation of lattice±defect interactions to a weaker, ther-
modynamically consistent representation. The order of the statistical representation
of the evolving defect population in the continuum constitutive relations is invari-
ably reduced. This scaling consideration is signi®cant, as it a� ects the capability of
the continuum constitutive relations to mimic path history dependence of non-equi-
librium microstructure evolution obtained from MD simulations, for example. One
then must choose between various representations of the defect ®elds and their
evolution in order to model material response; there is always a `criterion of choice’
involved for the analyst. At the same time it becomes necessary to decompose rate of
deformation, for example, into elastic and inelastic parts. Development of principles
for establishing these criteria are yet another fertile area of future development. This
is why we emphasize the distinction between the concept of a dynamically equivalent
continuum and the related but separate issue of multiscale modelling or scale transi-
tion.

Finally, in passing, it is noted that the same formulation can be applied directly
to higher-length-scale discrete particle systems without loss of generality, in analogy
to other theories of polar continua. Such applications will allow an account of couple
stress e� ects that arise either owing to interparticle polarity (e.g. friction) or owing to
lower scale force dipoles (e.g. magnetodielectricity) that are incorporated into the
particle description. For such higher-scale systems, however, non-local interactions
with second- and higher-nearest-neighbou r particles may be negligible; this may
simplify the equivalence arguments set forth here.
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APPENDIX A
Shape functions

In general, for polar materials, calculation of the couple stress involves a second
spatial di� erentiation. Therefore, quadratic or even higher-order shape functions are
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required. Higher-order shape functions are also needed when spatial regions Ve with
M > 4 (three dimensions) and M > 3 (two dimensions) are considered. However,
many analyses concern non-polar materials. If attention is focused on formulating a
continuum representation using 3D tetrahedral elements or 2D triangular elements
for solution convenience, linear shape functions can be used.

For 3D tetrahedral elements, the linear shape function is

N1…r† ˆ …r ¡ r2† …r ¡ r3† …r ¡ r4†j j
…r1 ¡ r2† …r1 ¡ r3† …r1 ¡ r4†j j ; …A 1†

where r ˆ xi ‡ yj ‡ zk. Expressions for N2, N3 and N4 can be obtained by even
permutations of the indices. These functions and their gradients have the following
properties.

NI …rJ† ˆ 1; I ˆ J;

0; I 6ˆ J;

X4

Iˆ1

NI ˆ 1;

…

Ve

NI dV ˆ Ve

4
;

X4

Iˆ1

BI ˆ 0;

(
…A 2†

where Ve ˆ 1
6

…r1 ¡ r2† …r1 ¡ r3† …r1 ¡ r4†j j is the volume of the tetrahedron. For
2D triangular elements and on 3D surfaces,

N1…r† ˆ …r ¡ r2† …r ¡ r3†j j
…r1 ¡ r2† …r1 ¡ r3†j j : …A 3†

Expressions for N2 and N3 can be obtained by even permutations of the indices.
These functions have properties similar to those in equations (A 2), that is

NI …rJ† ˆ 1; I ˆ J ;

0; I 6ˆ J ;

X3

Iˆ1

NI ˆ 1;

…

Ae

NI dV ˆ Ae

3
;

X3

Iˆ1

BI ˆ 0;

(
…A 4†

where Ae ˆ 1
2

…r1 ¡ r2† …r1 ¡ r3†j j is the area of the triangular element. When 2D
triangular elements are used, only three of the six relations of equations (42) are
independent and they can be chosen to be three of the following six, where the choice
is arbitrary as long as not all three are for the same (x or y) direction:

¼
…e†
11 B11 ‡ ¼

…e†
12 B12 Ae ˆ p11;

¼
…e†
21 B11 ‡ ¼

…e†
22 B12 Ae ˆ p12;

¼
…e†
11 B21 ‡ ¼

…e†
12 B22 Ae ˆ p21;

¼
…e†
21 B21 ‡ ¼

…e†
22 B22 Ae ˆ p32;

¼
…e†
11 B31 ‡ ¼

…e†
12 B32 Ae ˆ p21;

¼
…e†
21 B31 ‡ ¼

…e†
22 B32 Ae ˆ p32;

…A 5†

where p11 and p12 are the x and y components respectively of f int
1 . In general, the ®rst

subscript of p¬ and B¬ refers to the atom with which the vectors are associated and
the second subscript refers to the component of the vector. Note that ¬ ˆ 1; 2; 3 and

 ˆ 1; 2 here. Also, ¼
…e†
12

ˆ ¼
…e†
21 .
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