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ABSTRACT

Microstructure has a strong influence on fracture toughness of materials through

the activation of different fracture mechanisms. To tailor the fracture resistance

through microstructure design, it is important to establish relations between

microstructure and fracture toughness. A multiscale computational framework

based on the Cohesive Finite Element Method (CFEM) is introduced to facilitate

relations between microstructure and the fracture toughness of ductile

polycrystalline materials. This material design framework includes 3D image

based microstructure reconstruction, 3D meshing, and finite element

implementation. It allows the material fracture toughness to be predicted

through explicit simulation of fracture processes involving arbitrary crack paths,

crack tip microcracking, and branching. Cohesive elements are embedded both

within the grains and along the grain boundaries to resolve the different material

separation processes. The calculations carried out concern Ti-6Al-4V alloy and

focused on the two primary fracture mechanisms which are correlated with

microstructure characteristics, constituent properties, and deformation

behaviors. The methodology is potentially useful for both the selection of

materials and tailoring of microstructure to improve fracture resistance.
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Introduction

The development of new and improved materials with specified performance

requirements requires in-depth understanding of the microstructure-property rela-

tionships. To establish the correlation between microstructure and fracture tough-

ness, it is of great importance to quantify how an advancing crack interacts with the

microstructure at multiple length scales and how microstructure determines a mate-

rial’s fracture toughness through the activation of different fracture mechanisms.

Numerous efforts have been made to develop 2D simulation methods to study the

crack initiation and propagation in brittle materials [1–4] and metallic polycrystal-

line materials [5–7]. However, fracture is inherently a 3D problem. Most of these 2D

models, which assume plane strain conditions, cannot capture the 3D morphology

and orientation of grains, nor do they track crack-material interactions due to non-

planar crack extension.

Over the past few years, the crystal plasticity based finite element method

(CPFEM) has been widely used to analyze anisotropic deformation mechanisms in

polycrystalline metals [8–10]. This method has also been coupled with the cohesive

finite element method (CFEM) to address the material fracture behaviors [11–14].

Currently, most of these models only consider “virtual” idealized microstructures

and intergranular fracture along the grain boundaries. None of them provides the

capability to explicitly capture both transgranular and intergranular fracture mecha-

nisms and predict fracture toughness for realistic microstructures. The primary chal-

lenges lie in the geometrical complexity of 3D microstructures and difficulties to

implement such information in finite element modeling.

We propose a multiscale material design framework that includes 3D image

based microstructure reconstruction, 3D meshing, and finite element implementa-

tion. The 3D microstructures can be reconstructed from actual morphological fea-

tures and crystallographic orientations, combining experimental investigations

involving serial sectioning and electron backscatter diffraction (EBSD) with finite

element modeling. For better delineation of grain boundaries and more realistic pre-

diction of crack trajectory, unstructured tetrahedral meshes are employed by using

the open source code iso2mesh [15]. Cohesive elements with traction-separation

laws are embedded within grains and along the grain boundaries in order to respec-

tively resolve transgranular and intergranular fracture modes. Crystal plasticity is

incorporated into a User MATerial Subroutine (UMAT) for use in the commercially

available FE software ABAQUS [16]. This modeling framework allows prediction of

fracture toughness through explicit simulation of 3D fracture processes in micro-

structures by calculating the J-integral. The methodology gives new insights into the

physical aspects of competition between different fracture mechanisms and its corre-

lation with the plastic deformation and crystallographic texture evolution.

3D Microstructure Reconstruction

Voronoi tessellation is a popular technique for generating polycrystalline micro-

structures due to its simplicity, space-filling nature, and the availability of theoretical

results for the topological properties [17,18]. However, microstructures generated in

this way are not always consistent with experimental results [19]. To realistically
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capture the topological and statistical properties of microstructures, a method for

instantiate 3D polycrystalline microstructures is employed. A set of ellipsoidal grains

are generated based on predefined distributions of the ratios of the major ellipsoidal

axis. These ellipsoids are placed into the space until no more non-overlapping ellip-

soids can be placed. The random packing and placement of these ellipsoids follows

the algorithm developed by Przybyla [20] and Tschopp [21]. Once every ellipsoidal

grain has been randomly placed and oriented, the open space in between is filled by

the process of grain growth. The grain growth algorithm starts with one grain and

sequences through the rest of the grains, increasing their size in each direction by

one pixel at a time. This process repeats itself until every grain reaches its nearest

neighbor. After this point, the voxels on either side of the grain boundary no longer

evolve in subsequent steps. Once all the free spaces are filled, the 3D microstructure

is fully instantiated and its morphological information is stored in a 3D matrix. The

exported 2D images are essentially from the generated 3D microstructure. The 2D

image series is employed as input for visualization and meshing as required by the

open source code iso2mesh [15]. A 2D rendering of ellipsoidal grain packing and

the grain structure morphology after grain growth are illustrated in Fig. 1.

Using grain equivalent ellipsoids instead of other space filling methods like Vor-

onoi tessellation allows construction of more complex grain morphologies such as

elongated grains that are common in rolled ductile metals [22]. A Ti-6Al-4V micro-

structure with bi-modal grain size distribution is generated using this method with a

bi-modal grain size distribution. The grain size is determined by first calculating the

new ellipsoid volumes to account for grain growth. The actual grain size cumulative

distribution function (CDF) and target CDF for each phase are plotted in Fig. 2. This

cumulative distribution function can be used to assess how well the final size distri-

bution fits to a log normal distribution function. This algorithm allows explicit con-

trol of geometric attributes of the microstructure, such as the volume fraction of

each phase, average grain size as well as the grain size distribution. This algorithm

allows explicit control of geometric attributes of the microstructure, such as the vol-

ume fraction of each phase, average grain size as well as the grain size distribution.

A series of 2D microstructure images generated from the above ellipsoidal pack-

ing algorithm are employed as the input for 3D microstructure visualization and

meshing. These 2D image series can be experimental data such as serial sectioning

FIG. 1

(a) 2D rendering of ellipsoidal

packing algorithm upon initial

placement of ellipsoids and (b)

2D rendering of grain structure

based on ellipsoidal packing

after grain growth.
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with EBSD mapping. In order to obtain good delineation of grain boundaries and

potential crack trajectories, unstructured tetrahedral meshes are generated by iso2-

mesh [15] as illustrated in Fig. 3. The output data, including the node coordinates

for the generated volumetric mesh and the tetrahedral element information, are

used for the finite element implementation.

Finite Element Implementation with 3D

Reconstructed Microstructure

An edge-cracked specimen under Mode I tensile loading is modeled as shown in Fig.

4. This proposed framework consists of two length scales. The microscopic subgrain

scale with refined unstructured meshes has a size of 300 lm by 300 lm by 300 lm.

Three-dimensional cohesive elements with 6-node zero thickness (COH3D6) fill the

microstructure representation. Constitutive relations for the grains and separation

laws for grain boundaries are specified separately. The cohesive relation allows dam-

age and crack surface separation to be considered. Fracture emerges as a natural out-

come of the deformation process based on these constitutive laws. Cohesive

elements are embedded at the element surfaces both within the grains and along the

grain boundaries to resolve transgranular and intergranular fracture. The detailed

FIG. 3 3D microstructure reconstruction, meshing and domain decomposition.

FIG. 2

Target log-normal and fit model

distributions of the grain size

for the primary a grains (p1) and

the aþb grains (p2).
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embedding process will be discussed in the following subchapter. The macroscopic

region with structured coarse meshes has a size of 900lm by 900lm by 300lm. A

boundary displacement U¼ 10lm is imposed at the top and bottom surfaces

to effect Mode I tensile loading. This region does not have any cohesive element and

is employed to capture the overall material response at the structure level. We

choose elastic parameters C11 ¼ 162400MPa, C12 ¼ 92000MPa, C13 ¼ 69000MPa,

C33¼ 180700MPa, C44 ¼ C55¼ 46700MPa, C66 ¼ 35200MPa as reported by

Mayeur [23]. The effective shear modulus �G and bulk modulus �B in the homoge-

nized region are estimated following the self-consistent method as [24]

�G ¼ 4 C11 � C13ð Þ þ 2 C33 � C12ð Þ þ 6 C66 þ 2C44ð Þ
60

þ

15
4

2 C11 þ C12ð Þ þ C33 þ 4C13

C11 þ C12ð ÞC33 � 2C2
13
þ 3
C11 � C12

þ 1:5
C66
þ 3
C44

� ��1
and

�B ¼ 1
18

2C11 þ C33 þ 2C12 þ 4C13ð Þ þ C33 C11 þ C12ð Þ � 2C2
13

2 C11 þ C12 þ 2C33 � 4C13ð Þ

8>>>>>>>><
>>>>>>>>:

(1)

The effective Young’s modulus �E ¼ 114:62GPa and Poisson’s ratio �� ¼ 0:322 are

calculated according to

�E ¼ 9�B�G
3�Bþ �G

and

�� ¼ 3�B� 2�G
6�Bþ 2�G

8>><
>>:

(2)

Structural response, such as fracture toughness KIC , is evaluated by calculating the J-

integral along an arbitrary contour in this region. Note that the pre-crack locates

both within the homogenized and microstructure region. The pre-crack plane intro-

duced in the homogenized region is perpendicular to the applied displacement direc-

tion. However, it is impossible to maintain the exactly identical pre-crack plane in

the microstructure region since unstructured tetrahedral meshes are employed. To

deal with this problem, a pre-crack path that consists of two layers of nodes is

FIG. 4

Specimen configuration used in

the analysis.
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defined to extend the pre-crack to the microstructure as illustrated in Fig. 5. These

nodes are selected according to their relative distances to the planer pre-crack. In

our calculations, a tolerance of 65lm is considered. These nodes are duplicated and

redistributed to elements that share the same surface patches. The introduction of

pre-crack facilitates crack initiation and propagation in the microstructure region.

3D COHESIVE ELEMENT INSERTION

Specifying cohesive surfaces for complex 3D microstructure meshes is not a trivial

task. The biggest challenge lies in how to effectively deal with the changes in the 3D

nodal and elemental connectivities due to the introduction of cohesive surfaces. An

algorithm has been developed to automatically insert 3D cohesive elements along

grain boundaries and within individual grains, as illustrated in Fig. 6. The algorithm

includes the following steps: (1) Read the nodal coordinates and element arrange-

ments of the microstructure meshes generated from iso2mesh. (2) Separate the

entire node and element information into grain and grain boundary sets, respec-

tively. (3) Define the location where cohesive elements will be inserted. The grain

boundary is taken as an example. (4) Sort out all the shared faces and the corre-

sponding element indices within the grain boundary element set. (5) Duplicate the

nodes in the shared faces and redistribute the updated node label to the

FIG. 5

Scheme of pre-crack location in

the microstructure region.
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corresponding elements. As illustrated in Fig. 6, element 1 and element 2 share the

same face with nodes 2, 3, and 4. Assume N is the current total node number. Node

Nþ 1, Nþ 2, and Nþ 3 are cloned from node 2, 3, and 4, respectively. When distrib-

uting the duplicated nodes to elements (element 1 and element 2 in this case), it is cru-

cial to make sure that the node labels in each element are only allowed to update once.

For example, node 2 can be the member of another shared face in addition to face (2 3

4). Once node 2 in element 1 are replaced with node Nþ 1, it is not allowed to be

replaced by another duplicated node afterwards. This duplicated node can only be

redistributed to the other element which shared the face. (6) The cohesive element will

be generated by connecting the 6 node label. As illustrated in Fig. 6, each cohesive ele-

ment should follow the numbering pattern as [2 3 4 Nþ 1 Nþ 2 Nþ 3].

Generally speaking, each cohesive element is embedded at surfaces shared by

two bulk elements. If the two elements belong to different grains, the cohesive ele-

ment is considered as grain boundary cohesive element. Otherwise, it is assigned as

FIG. 6

Illustration of the algorithm for

cohesive element insertion.
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grain cohesive element. Cohesive elements within each grain are stored in a separate

set for different assignment of cohesive laws. The default program will automatically

insert cohesive elements everywhere in the microstructure region. The user can also

define specific locations for cohesive element insertion, such as the entire grain

boundaries, target grains or grain boundaries surrounding the target grains.

Both cohesive elements along grain boundaries and within grains follow the

bilinear traction-separation law shown in Fig. 7. This is obviously an idealization

that can be easily modified to accommodate more detailed and quantitative informa-

tion regarding; for example, lower cohesive strength or separation energy of inter-

granular versus transgranular propagation. This law is derived from a potential U

which is a function of separation vector D through a state variable defined as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dn=Dncð Þ2þ Dt=Dtcð Þ2

q
. This variable describes the effective instantaneous state

of mixed-mode separations. Here, Dn ¼ n � D and Dt¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp
� �2þ Dq

� �2q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� D � nð Þnð Þ � p½ �2þ D� D � nð Þnð Þ � q½ �2

q
¼ D� D � nð Þnj j, respectively, denote

the normal and tangential components of D, with n being unit normal and p and q

being two unit tangential vectors. Note that n, p, and q are mutually orthogonal to

each other and form a right-handed triad. Dnc is the critical normal separation at

which the cohesive strength of an interface vanishes under conditions of pure nor-

mal deformation (Dt ¼ 0). Similarly, Dtc is the critical tangential separation at which

the cohesive strength of an interface vanishes under conditions of pure shear defor-

mation (Dn ¼ 0). Tmax represents the maximum traction that the cohesive element

can sustain at the onset of irreversible separation.

In order to account for the irreversibility of separations, a parameter

g ¼ max g0; kulf g is defined. As illustrated in Fig. 7, g0 is the initial value of g which

defines the stiffness of the original undamaged cohesive surface, while kul is the hith-

erto maximum value of k at which an unloading process was initiated. It should be

noted that kul is associated with the onset of an unloading event and is not necessar-

ily the hitherto maximum value of k. kul represents the current (reduced) stiffness of

the cohesive surfaces after damage and unloading have occurred. Furthermore, g0
represents the characteristic value of effective separation k at which the effective

traction r for a cohesive surface pair reaches the strength Tmax of the undamaged

surface. kul stands for the critical level of k at which r reaches the reduced strength

Tmax 1� gð Þ= 1� g0ð Þ of the hitherto damaged cohesive surface pair. As indicated in

Fig. 7, separation occurs elastically and the cohesive energy stored (work done in

FIG. 7

Bilinear traction-separation law.
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causing separation) is fully recoverable between A and B (0 � k � g0). Damage in

the form of microcracks and other small-scale defects does not occur. Between B

and C (g0 � k � 1), material degradation causes progressive reduction in the

strength of the cohesive surfaces. This represents a phenomenological account of the

effects of microcracks and other defects not explicitly modeled in the CFEM model.

Unloading from any point P follows path PA and subsequent reloading follows AP

and then PC. Part of the work expended on causing the separation in this regime is

irreversible, as indicated by the hysteresis loop ABP which implies dissipation during

the softening process. Correspondingly, there is a decrease in the maximum tensile

strength of the cohesive surface. This is reflected in the elastic reloading of the inter-

face along AP and further softening along path PC.

CRYSTAL PLASTICITY FORMULATION

Plastic deformation in metals is a manifestation of dislocation motion and interac-

tion at the microscopic scale. The details are intimately related to the crystallo-

graphic structure of the material as well as the current state of the microstructure.

Macroscopic models of plasticity lack the ability to link these fundamental mecha-

nisms to the bulk material response without very substantial experimental character-

ization. Many formulations of constitutive laws for the elastic–plastic deformation of

single and polycrystals have long been proposed [25–30]. The basic premise of these

theories is that macroscopic plastic deformation is related to the cumulative process

of slip system shearing relative to the lattice. This methodology provides a physical

link between the processes at different length scales. The two basic components of

crystal plasticity model are the kinematic and kinetic relations.

The multiplicative decomposition of the total deformation gradient is given by

F ¼ Fe � Fp(3)

where:

Fe¼ the elastic deformation gradient representing the elastic stretch and rota-

tion of lattice, and

Fp¼ the plastic deformation gradient describing the collective effects of disloca-

tion motion along the active slip planes relative to a fixed lattice in the reference

configuration.

Unit vectors sa0 and na
0 denote the slip direction and the slip plane normal direc-

tion, respectively, for the ath slip system in the undeformed configuration. The

resolved shear stress on each slip system is related to the Cauchy stress tensor r

according to

sa ¼ r: sa � nað Þ(4)

where the slip vectors have been rotated into the current configuration. Under the

application of the resolved shear stress, the shearing rates _ca on the slip systems are

related to the plastic velocity gradient in the intermediate configuration according to

Lp ¼
X

a

_casa0 � na
0(5)

with _ca ascribed to follow the rate-dependent flow rule as
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_ca ¼ _c0
sa � va

ga

� �m

sgn sa � vað Þ(6)

where:

m¼ the inverse strain rate sensitivity exponent, and

ga and va¼ drag stress and back stress, respectively, on the ath slip system.

These quantities evolve according to

_ga ¼ H
X
b¼1

qab _cb
		 		; and

_va ¼ Akin _ca � Adynva _caj j

8><
>:(7)

Here, qab is the latent hardening coefficient, H, Akin, and Adyn are the isotropic hard-

ening, kinematic hardening and dynamic recovery coefficients, respectively. These

non-linear coupled differential equations are solved using UMAT [22].

GENERATION OF MESH TIE CONSTRAINT

Calculation of the J-integral in the homogenized region requires a closed contour

connecting the upper and lower crack surfaces. It is very difficult to define contours

if the homogenized region is meshed with unstructured elements as in the micro-

structure. One possible way to address this problem is to use structured tetrahedral

meshes in the homogenized region and generate a transitional region to connect the

two types of meshes together. However, this method requires very sophisticated

algorithms and may pose the challenge to change the size of the model when differ-

ent mesh density is employed in the microstructure region. Apparently, the transi-

tional region will increase as the discrepancy of mesh density between the two mesh

regions increases. The size dependency of microstructure mesh density precludes the

application of this method.

We employ the mesh tie constraint to assemble the two regions with different

mesh types and densities as illustrated in Fig. 8. This constraint requires no confor-

mity of nodal connectivity between the two regions. It circumvents the problem

with acceptable accuracy. As illustrated for a 2D problem in Fig. 9, there is only a

FIG. 8

Model assembly between the

microstructure and

homogenized region through

mesh tie constraint.
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very minor difference between the J values for cases with and without the mesh tie

constraint. It should be noted that iso2mesh cannot generate perfect microstructure

meshes with smooth exterior surfaces and sharp vertices as shown in Fig. 10. If the

two regions cannot be seamlessly attached, the energy loss caused by the gap will sig-

nificantly influence the accuracy of calculation. We develop an innovative algorithm

to generate a shell mesh, which is around the unsmoothed microstructure block to

ensure proper node and element connectivity to the surrounding homogenized

region. Now the two regions can be seamlessly assembled and be preceded to finite

element analysis in ABAQUS.

Results and Discussions

A microstructure 300 lm by 300lm by 300 lm in size is employed in the following

calculation. It is inserted into the finite element model using the methodology dis-

cussed in the previous section. A displacement of U ¼ 10lm is applied on both the

upper and lower surfaces of the model, as illustrated in Fig. 4.

For ductile materials, two major competitions are at work. One is the competi-

tion between different fracture mechanisms (for example, transgranular fracture ver-

sus intergranular fracture). The other competition is between material deformation

(inelasticity) and crack face generation. In this paper, we focus on how heterogene-

ous grain deformation affects crack initiation and propagation. To simplify the anal-

ysis, we assume all grains share the same mechanical properties, except initial

FIG. 9

Effect of mesh tie constraint on

the calculated J values.
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orientations which are randomly assigned. Besides, the cohesive elements in the

grains and grain boundaries follow the same traction-separation law, so that they are

equally likely to fracture on one account. Under conditions of small-scale yielding,

the fracture energy U of Ti-6Al-4V is U ¼ J ¼ 1� �2ð ÞK2
IC=E ¼ 9:58KJ=m2, with

the Young’s modulus E ¼ 114:62GPa, Poisson’s ratio � ¼ 0:322, and the fracture

toughness KIC ¼ 35MPa
ffiffiffiffi
m
p

. The maximum traction Tmax is obtained from

Tmax ¼ ð2U=DncÞ ¼ ð2U=aDtcÞ, where a is defined as Dnc=Dtc and is assumed to be

1. In order for the cohesive surfaces to achieve complete debonding, both the normal

and shear separations should not exceed the element size. Otherwise, the cohesive

surfaces would not fully debond and the damage cannot be considered true crack

formation. In our model, Dnc ¼ Dtc 2 1; 10ð Þ lm is a reasonable range for the sepa-

ration. The corresponding range of Tmax calculated from the above relations is

1.916–19.16GPa. For the specific case considered, Tmax ¼ 16GPa is employed for all

three directions.

It is noted from Fig. 11(a) that multiple cracks are observed in the microstructure

region. When mapping the deformed nodal coordinates to the grain arrangement

illustrated in Fig. 11(b), we notice that transgranular fracture is the dominant failure

mode. Even though the grains and grain boundaries are equally likely to fracture (as

the chosen condition for the analysis carried out here), the cracks tend to go through

the grains instead of following the grain boundaries. Besides, most of the cracks do

not follow the plane of the pre-crack and instead initiate away from it. To shed light

on this issue, a calculation is carried out without the pre-crack and the cohesive ele-

ments in the microstructure. The result is shown in Fig. 11(c). Again, cracks tend to

nucleate and propagate in grains with lower levels of plastic deformation. The exces-

sive strain energy which cannot be dissipated through plastic deformation has to be

released through surface creation. The propagation of the pre-crack is temporarily

FIG. 10 Shell mesh region around the unsmoothed microstructure mesh.
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restrained due to the significant plastic deformation in front of the crack-tip as illus-

trated in Fig. 11(c). Instead, microcracks nucleate and propagate into grains with less

plastic deformation. This example well explains the competition between material

deformation and crack formation. Further correlation between fracture toughness,

grain orientation, and grain size distribution can be established by using the frame-

work developed here. More systematic studies regarding the above issues will be dis-

cussed in the future publications.

Conclusion

A cohesive finite element based multiscale framework is developed to simulate crack

initiation and propagation in 3D polycrystalline microstructures. Crystal plasticity is

incorporated into the constitutive relations to capture how anisotropic deformation

FIG. 11 (a) Illustration of crack propagation in the microstructure, (b) mapping of deformed configuration in the microstructure,

and (c) anisotropic deformation in the microstructure region without pre-crack and cohesive elements.
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and texture evolution affect the crack propagation and the activation of different

fracture mechanisms. The methodology we proposed provides a way to reconstruct

3D microstructures from experimental data. It also allows the morphological and

crystallographic information of the microstructure to be implemented in the finite

element analysis, facilitating the ability to tailor microstructure to enhance fracture

toughness.
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