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a b s t r a c t

Microstructure and constituent properties combine to determine the overall fracture

toughness of particle-reinforced brittle composites through the activation of different

fracture mechanisms. The toughening is through increases in energy dissipation when

cracks are forced to follow tortuous paths. Based on the results of numerical simula-

tions, a semi-empirical model is developed to predict the fracture toughness of brittle

two-phase ceramic composites as a function of statistically defined morphological

attributes of microstructure, constituent properties and interfacial bonding character-

istics. The quantification of the fracture toughness is achieved by an assessment of the

contributions of different fracture mechanisms including matrix fracture, interfacial

debonding and particle cracking to the overall energy release rate. In particular, this

assessment involves a statistical characterization of the competition between crack

deflection and crack penetration at matrix/reinforcement interfaces using a modified

version of the energy criterion of He and Hutchinson which accounts for the effects of

finite reinforcement size, phase volume fractions, phase shape and phase distribution.

The fracture toughness–microstructure relation obtained can be used to identify trends

for materials design. Although the numerical quantification is specific to Al2O3/TiB2

ceramic composites, the approach and the model developed apply to brittle particle-

reinforced composites in general.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Microstructure in terms of geometric distribution of phases, constituent properties and interfacial bonding attributes
influences the deformation and failure behavior of heterogeneous materials through the activation of different underlying
mechanisms. In particular, the fracture behavior and fracture toughness of materials are determined by the mechanisms
through which cracks interact with constituents in microstructures. The establishment of microstructure–fracture
resistance relations requires the consideration of associated fracture mechanisms. In Li and Zhou (in press), the overall
fracture toughness of two-phase Al2O3/TiB2 ceramics is evaluated as a function of microstructural size scale, phase
distribution, phase morphology, phase volume fractions, bulk constituent properties and interfacial bonding stiffness using
cohesive finite element simulations and a J-integral based approach. The required input for the prediction includes
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Nomenclature

a, b Dundurs parameters
ad crack extension length along an interface
ap crack extension length into reinforcement
A crack area
e bi-elastic constant
E effective Young’s modulus of the composite

material
f volume fraction
Hm, Hin, Hp fractions of matrix cracking, interface

debonding and particle cracking
Fm, Fin, Fp surface energy of matrix cracking, inter-

face debonding and particle cracking
Jd, Jp energy release rates for crack deflection and

crack penetration
Ki

IC initiation fracture toughness
KIC propagation fracture toughness
K complex stress intensity factor
K1, K2 mode I and mode II stress intensity factors
kI amplitude factor
x crack length multiplication factor (CLMF)

mi shear modulus (i¼0 or 1)
Pij two-point correlation functions ( i¼0 or 1;

j¼0 or 1)
p crack deflection probability
r reinforcement roundness
Q interfacial bonding strength ratio
R particle radius
S characteristic reinforcement size
Tin

max interfacial bonding strength
T0

max baseline reference bonding strength
U0 parameter in He and Hutchinson’s crack

deflection criterion
U parameter in modified crack deflection

criterion
Uf total fracture energy released
vi Poisson’s ratio (i¼0 or 1)
v effective Poisson’s ratio of the composite

material
o crack incident angle
o0 critical crack angle for crack deflection
W total projected crack length
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statistical representation of microstructure geometry and characterization of constituent behavior and interfacial bonding.
Because statistical measures are used, this approach applies to microstructures with random heterogeneous phase
distributions and fracture processes with arbitrary crack paths or micro-crack patterns. In addition to the evaluation of
fracture toughness, the CFEM calculations also allowed the trajectories and crack surface areas (crack lengths in 2D)
associated with each fracture mechanism (matrix fracture, matrix/reinforcement interfacial debonding and crack
penetration of reinforcement particles) during fracture processes to be quantified. Along with the fracture energy of each
type of fracture site, the quantification of the crack surface areas makes it possible to calculate the total energy released
and, consequently, the overall energy release rate. Here in this paper, the information is used to develop an analytical
model for predicting the fracture toughness of such materials as a function of microstructure.
2. Fracture toughness and energy release rate

For brittle materials, the critical energy release rate JIC is rated to the fracture toughness KIC via

K2
IC ¼ JIC

E

1�n2
, ð1Þ

where E and n are, respectively, the effective Young’s modulus and effective Poisson’s ratio of the heterogeneous material.
For a tortuous crack path involving different types of fracture sites as illustrated in Fig. 1, the average energy release rate
Fig. 1. Schematic illustration of crack trajectory in a two-phase composite and crack lengths associated with different fracture mechanisms.
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J can be stated as

JIC ¼
@Uf

@A
�

FinLinþFmLmþFpLp

� �
tt

Wtt

¼
L

W
Fin

Lin

L
þFm

Lm

L
þFp

Lp

L

� �

¼ x Q , s, fð Þ FinHinþFmHmþFpHp

� �
, ð2Þ

where Uf is the total energy released to crack surfaces over the projected crack length W, A¼Wtt is the total projected crack
surface area with tt being the specimen thickness. It should be noted that W is the projection of the total curved crack
length (arc length L in 2D) in the direction of crack propagation. Specifically, if Lin, Lm and Lp represent the crack arc lengths
along the interface, within the matrix and through the reinforcement particles, respectively, L¼LinþLmþLp represents the
total crack arc length. Also in Eq. (2), Fin, Fm and Fp are the fracture energies for interface debonding, matrix cracking and
particle cracking, respectively. x(Q, s, f)¼L/W can be regarded as the crack length multiplication factor (CLMF). It is a
function that captures the influences of interfacial compliance as measured by strength ratio Q, reinforcement size scale s

[see Section 4.3 and Eq. (13) in Li and Zhou (in press), respectively], and the volume fraction f of the reinforcement phase.
The specific form of this function is unknown. In this paper, the value of x is determined empirically by fitting to CFEM
data. Details will be given in Section 4. Hin, Hm and Hp are the proportions of crack lengths associated with interface
debonding, matrix cracking and particle cracking, respectively. Obviously, the evaluation of Hin, Hm and Hp is the primary
task in order to predict KIC through Eqs. (1) and (2). The specific form is

KIC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1�n2
JIC

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1�n2
x Q , s, fð Þ FinHinþFmHmþFpHp

� �s
: ð3Þ

It should be pointed out that the analysis embodied in Eqs. (1) through (3) applies only to quasistatic crack growth for
which crack speed approaches zero. However, it is important to note that, for brittle materials considered here, the
evaluation of JIC (and therefore KIC) can be achieved by properly accounting for the effect of crack speed through fully
dynamic calculations, especially when the crack speed is low.

The task of evaluating the right-hand side of Eq. (3) constitutes the bulk of the development below. The interaction
between the propagating crack and the reinforcement phase determines Lin, Lm and Lp and, consequently, Hin, Hm and Hp.
There are two possible types of fracture path when a crack approaches a matrix/reinforcement interface in a ceramic
composite consisting of a matrix phase and a reinforcement phase. The first fracture mode is interface debonding which is
an important fracture mechanism for crack deflection and plays a critical role in material toughening. This mode of
fracture is promoted by weak interfacial cohesion, smaller particle size and higher particle roundness. The second fracture
mode is particle cracking triggered by crack penetration. This mode of fracture usually signifies catastrophic failure
(Hauert et al., 2009; Miserez et al., 2004) and should be avoided as it leads to lower energy release rate because of straight
(shorter) fracture paths, even though the fracture energy of the reinforcement phase is higher than those of the interfaces
and the matrix phase. Clearly, it is of great importance to quantify the conditions under which the two competing fracture
mechanisms are activated. Such a quantification can guide the design and manipulation of microstructures to enhance the
fracture resistance of materials through synthesis.

Currently, two approaches exist for determining the activation of the mechanisms. One involves stress-based criteria
governed by local asymptotic stress fields at the matrix/particle interfaces (Gupta et al., 1993; Warrier et al., 1997). The
other involves energy-based criteria accounting for the differences in the works of fracture along possible alternative crack
paths (He and Hutchinson, 1989a, b; Martin et al., 2001). From the energy perspective, a crack would grow when the
energy available in the stress field reaches the energy required to form new fracture surfaces along a certain path. The
prediction of crack propagation requires the calculation of the energy release rate J as well as a knowledge about the
fracture energy F. Here, Jd and Jp are used to denote the energy release rate for crack deflection and crack penetration,
respectively. Similarly, Fin and Fp denote the fracture energy of the interface and reinforcement, respectively. For brittle
materials, crack deflection at an interface requires JdZFd. Crack penetration, on the other hand, requires JpZFp. It is
unclear which fracture mechanism would be activated if both conditions are satisfied simultaneously.

He and Hutchinson (1989a, b) analyzed the behavior of a semi-infinite crack perpendicular to an infinite planar
interface in a symmetrically loaded, isotropic bi-material, as illustrated in Fig. 2. They argued that crack deflection occurs
when

Jd=Jp4Fin=Fp: ð4Þ

Gupta et al. (1992) and (1993) extended He and Hutchinson’s work to anisotropic materials and developed a strength
criterion for crack deflection and validated their analysis using laser spallation experiments. Subsequently, Martı́nez and
Gupta (1994) improved the criterion such that it does not require any assumption concerning crack extension ratio by
using a quasi-static approximation and by assuming that deflection occurs under constant loading. They also showed that
the energy criterion for deflection is sensitive to material anisotropy.

Although the above analyses concern the interaction between a single crack and an infinite, flat interface, they reveal
some of the fundamental relations that govern the behavior of cracks as they approach interfaces. In this paper, we provide



Fig. 2. He and Hutchinson’s model of crack deflection/penetration at a bimaterial interface.
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an empirical modification of He and Hutchinson’s criterion to allow consideration of the effects of finite reinforcement
size, reinforcement shape and phase distribution in a two-phase microstructure. Because of the random nature of material
heterogeneities at the microstructure level, the interaction of a propagating crack with the phases in a microstructure is
rather random. However, over distances longer than the characteristic size scale of the microstructure, the cumulative
effect of the random interactions determine the behavior measured at the macroscopic scale. To capture this cumulative
effect in the setting of the two-phase ceramic composites consisting of a matrix and a population of reinforcement
particles, a measure reflecting the cumulative probability for a crack to encounter the reinforcement phase is used in the
modified criterion. This cumulative probability is obtained from the two-point correlation functions. Based on these
analyses, a relation between microstructure attributes and overall fracture toughness of the composites is established by
assessing the proportion of each fracture mode associated with the crack propagation process. The relation is calibrated
using the results of CFEM calculations reported in Li and Zhou (in press).

3. Analytical model for fracture mode selection

Characterization of the competition between crack deflection and crack penetration can allow the proportion of each
fracture mode to be quantified. He and Hutchinson (1989a, b) provided an analysis of crack deflection versus penetration
at a symmetrically loaded, isotropic bi-material interface. The problem analyzed involves a semi-infinite crack
perpendicular to the planar bi-material interface as illustrated in Fig. 2. The solution of this problem depends on Dundurs
parameters (Bogy, 1970; Dundurs, 1969) in the forms of

a¼ ½m1 1�v0ð Þ�m0 1�v1ð Þ�=½m1 1�v0ð Þþm0 1�v1ð Þ�, and

b¼ 0:5½m1 1�2v0ð Þ�m0 1�2v1ð Þ�=½m1 1�v0ð Þþm0 1�v1ð Þ�:

(
ð5Þ

Here, mi and vi are the shear modulus and Poisson’s ratio respectively for matrix Al2O3 (i¼0) and reinforcement TiB2

(i¼1). Both a and b vanish when the matrix and reinforcement materials are identical.
The stress field ahead of the crack-tip is characterized by

sxx ¼ kIð2pyÞ�l ð6Þ

where kI is the amplitude factor proportional to the applied load, l is a function of a and b satisfying

coslp ¼
2 b�að Þ

1þb
1�lð Þ

2
þ
aþb2

1�b2
, ð7Þ

as discussed by Zak and Williams (1963).
Along the interface ahead of the crack-tip, the tractions are

syyþ isxy ¼ Kð2prÞ�0:5rie, ð8Þ

where r is the distance from the crack-tip, i¼
ffiffiffiffiffiffiffi
�1
p

and

e¼ 1

2p
ln

1�b
1þb

� �
ð9Þ

is the bi-elastic constant. It should be noted that K¼K1þ iK2 in Eq. (8) is the complex stress intensity factor. K1 and K2 are
the mode I and mode II stress intensity factors, respectively (Rice, 1988).

It can be shown that the energy release rate for crack penetration is

Jp ¼
1�v1

2m1

K2
1 ¼

1�v1

2m1

z2k2
I a1�2l

p , ð10Þ
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where z is a dimensionless function of a and b(He and Hutchinson, 1989a), kI is amplitude factor, and ap is the crack
extension length into the reinforcement.

Similarly, the energy release rate for crack deflection is

Jd ¼
1�v1

m1

þ
1�v2

m2

� � K2
1þK2

2

� �
4 cosh2

ðpeÞ
, ð11Þ

where

K2
1þK2

2 ¼ k2
I a1�2l

d ½9c92
þ9h92

þ2ReðchÞ�, ð12Þ

with ad being the crack extension length along the interface. c and h are functions of a and b whose expressions will be
discussed later.

He and Hutchinson (1989a) assume that ad¼ap so that Jd/Jp is independent of the crack extension lengths. The analysis
uses the parameter

U0 ¼
Jd

Jp

�
Fin

Fp
¼

1�b2

1�að Þz2
9c92
þ9h92

þ2Re chð Þ
h i

�
Fin

Fp
ð13Þ

to determine the activation of the fracture mechanisms. Crack deflection is predicted when U040, otherwise, crack
penetration into the reinforcement phase is expected. In the above relation, Jd,Jp, Fin and Fp are, respectively, the energy
release rates of crack deflection and particle penetration and the surface energies of the interface and reinforcement. For
the Al2O3/TiB2 ceramic composite system considered in this paper, Fin and Fp are taken as 78.5 J/m2 and 102.2 J/m2,
respectively. The calculations of the values of z, c and h are discussed in considerable detail by He and Hutchinson (1989a).

To account for the effects of finite particle size, particle shape and microstructure phase distribution, we provide an
empirical modification of U0 in the form of

U ¼
1�b2

a0 1�að Þ
9c92
þ9h92

þ2Re chð Þ
h i

ra1 e
a2
s

� �
�
Fin

Fp
, ð14Þ

where r is the roundness of the reinforcement particle, s represents the characteristic reinforcement size which is
obtained by fitting the two-point correlation functions as

P11 ¼ f�f 2
� �

e� D=sð Þþ f 2,

P00 ¼ ½ 1�fð Þ� 1�fð Þ
2
�e� D=sð Þþ 1�fð Þ

2, and

P01 ¼ P10 ¼ 1�P11�P00ð Þ=2:

8>>><
>>>:

ð15Þ

Here, Pij denotes the probability for randomly placed vectors of a given length D to start in phase i (i¼0 or 1) and ends
in phase j (j¼0 or 1). In this paper, the matrix is defined as phase 0, while the reinforcement phase is defined as phase 1.
For microstructures with randomly distributed circular particles of the same diameter, s is equal to the diameter. The
values of s for the microstructures analyzed are given in Fig. 7 of Li and Zhou (in press). P01 can be regarded as the
geometric probability of encountering the reinforcement phase by a crack of length D that is propagating in the matrix.

To facilitate parametric studies, the coefficient c and h are approximated as (Veljkovic, 2005)

c¼ 1
2

ffiffiffiffiffiffiffiffi
1�b
1þa

q
e�

io
2 þe�

3io
2

� �
, and

h¼ 1
4

ffiffiffiffiffiffiffi
1�b
1�a

q
e�

io
2�e�

3io
2

� �
,

8>><
>>: ð16Þ

respectively, over the crack incident angle range of 0rorp=2 (see Fig. 3).
Implied in Eq. (14) is the fact that smaller and more rounded (Figs. 11 and 16, 17 in Li and Zhou (in press), respectively)

particles enhance fracture toughness by inducing crack deflection. It should be noted that U reduces to U0 for a circular

particle (r¼ 1) whose size approaches infinity, since lim
s-1

ra1 e
a2
s

� �
-1. To best describe the CFEM results, the values of the

parameters are chosen as a0¼1.3, a1¼0.185 and a2¼5.5 through curve fitting.
As shown in Fig. 3, the crack deflects at the interface when U40, otherwise, it penetrates into the reinforcement and

causes particle cracking. The effect of crack incident angle o is through coefficients c and h in Eq. (16). According to He and
Hutchinson (1989a, b), both c and h tend to saturate when o4451, as shown in Fig. 4. Furthermore, Veljkovic (2005) has
demonstrated that the error associated with the form of c and h in Eq. (16) is within 1% when 01ooo451. Therefore, it is
quite reasonable to assume that UðoÞ ¼U 453

ð Þ i.e., crack deflects, when o4451. The probability of crack deflection is,
therefore,

p¼

R p=2
o0

UdoR p=2
0 9U9do

: ð17Þ



Fig. 3. Parameter U for the determination of crack penetration and crack deflection at a matrix/particle interface.

Fig. 4. Dependence of parameter c and h on the crack incident angle o.
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Here, o0 denotes the critical crack angle beyond which crack deflection will occur. The likelihood of crack deflection
increases as o increases or as crack direction deviates from the direction normal to the interface, as illustrated in Fig. 3 and
shown in Fig. 5. Obviously, o401 represents the least likely scenario for crack deflection.

Reflecting the trend in the CFEM results, reinforcement size also has a significant impact. As shown in Fig. 5(a) which is
generated using Eq. (14), larger particles are more susceptible to crack penetration. The critical size scale for avoiding
penetration under the conditions considered is approximately s¼20 mm for the materials and conditions of the CFEM
calculations on which the analysis here is based. This trend is confirmed by the CFEM results shown in Fig. 6. The
calculations are carried out under identical conditions, except the size of the particle in front of the crack. As the size of the
particle (r¼ 1) increases beyond s¼20 mm, a fracture mode transition from crack deflection to crack penetration is clearly
observed. Under a fixed s, Fig. 5(b, d) shows that higher r values favor crack deflection and, therefore, enhance KIC. This
trend is also confirmed by the CFEM results shown in Fig. 7. Note that the average roundness r for the circular, square,
elliptical and real reinforcements is 1.0, 0.72, 0.62, and 0.62, respectively. As r decreases from 1 to 0.62, a fracture mode
transition from deflection to crack penetration is observed, leading to decreased propagation fracture toughness KIC as
illustrated in Figs. 16,17 in Li and Zhou (in press).

4. Microstructure-fracture toughness relation—influences of different mechanisms

To predict KIC, it is important to quantify the probability of occurrence (also referred to as the proportion from here on)
for each fracture mechanism over a given crack propagation distance. Here, we take interfacial debonding as an example.
The proportion of interfacial debonding over a distance D is the product of (i) the cumulative probability of the crack
encountering the reinforcement phase over D and (ii) the probability of crack deflection p. It should be noted that crack
deflection can occur through either matrix cracking or interfacial debonding. Therefore, account must be taken of the



Fig. 5. (a) U as a function of crack incidence angle o (Fig. 1) for different reinforcement sizes and a fixed mean roundness of 1, (b) effect of reinforcement

size on the probability of crack deflection, (c) U as a function of crack incidence angle o for different reinforcement mean roundness values and a fixed

reinforcement size of s¼33 mm and (d) effect of mean roundness on the probability of crack deflection.

Fig. 6. CFEM results showing the effect of reinforcement size on fracture mode. All conditions except the particle size are the same in the three

cases shown.
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Fig. 7. CFEM results showing the effect of reinforcement roundness on fracture mode. All conditions except the particle shape are the same in the

cases shown.
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interfacial bonding strength and the fracture energies of the interfaces and the matrix. The relation that accounts for the
above factors (fracture mechanism, fracture toughness and microstructure characteristics) can be empirically described as

Hin Dð Þ ¼

R D

0
P01ðDÞdx

D p Fin
Fm

� ��alnðQ Þ
,

Hp Dð Þ ¼

R D

0
P01ðDÞdx

D 1�pð Þþ

R D

0
P11ðDÞdx

D

 !
Fin

Fm

� ��blnðQ Þ
, and

HmðDÞ ¼ 1�HinðDÞ�HpðDÞ:

8>>>>>><
>>>>>>:

ð18Þ

Here, Hm,Hin and Hp denote the proportions of matrix cracking, interface debonding and particle cracking, respectively.
Fin,Fm and Fp are the fracture energies of the interface, matrix and reinforcement, respectively. Their values are taken as
78.5 J/m2, 21.5 J/m2, and 102.2 J/m2, respectively. a and b are dimensionless parameters determined by fitting the relations
to the CFEM results. P01 and P11 are two-point correlation functions. Q1 ¼ Tin

max=T0
max is the interfacial bonding strength

ratio, with Tin
max being the interfacial cohesive strength and T0

max being a baseline reference strength of 0.6 GPa. This
reference value is the average value of the cohesive strengths of the matrix and reinforcement. Tin

max affects the interfacial
cohesive energy F and has a significant impact on fracture behavior.

In the analysis carried out here, two scenarios are considered. In the first set of calculations, the interfacial cohesive energy F
is kept constant while Tin

max and the critical separations (Dtc and Dnc) are varied accordingly. The specific range of bounding
strength considered here is 10�5rQ1 ¼ Tin

max=T0
maxr10. These cases represent very ductile (small Q1 values) to very brittle

interfaces with Q1¼1 being the well-bonded case. They can also be regarded as representing very weakly and very strongly
bonded interfaces. In the second set of calculations, the critical separation is kept constant at Dtc¼Dnc¼0.068 mm while Tin

max

and, therefore, the interfacial cohesive energy F are varied accordingly. The range of cohesive strength ratio considered in this
case is also 10�5rQ 2 ¼ Tin

max=T0
maxr10. The only difference compared with the first scenario is that the interfaces remain brittle

for all the Q2 cases. It should be noted that the separation needed to achieve full debonding is Dc¼6800 mm for Q1¼10�5, while
the interfacial fracture energy is F¼10�5Fin for Q2¼10�5 (Fin being cohesive energy of the interface for the baseline case of
Q2¼1). Both situations effectively yield a scenario in which there is essentially no bonding between the two phases. Under these
conditions, the calculations represent the behavior of a porous ceramic with the particles being pores. When Q1¼Q2¼10, there is
negligible differences between the two scenarios since the crack barely goes through the interfaces. The largest discrepancy
comes from the range 10�3rQ1(Q2)r10�1. In order to capture the two scenarios, a¼0.4 and b¼2 are chosen for the cases with
Q1, while a¼0.63 and b¼1.54 are used for cases with Q2.

To quantify the relative effects, Fig. 8 shows Hin and Hp as functions of reinforcement size s and reinforcement volume
fraction f. The circular symbols signify the transition in the dominant fracture mechanism under a specific f. On the left side of
each transition point (smaller s), interface debonding dominates as Hin is always above Hp. On the right hand side (larger s),
particle cracking dominates. To maintain the dominance of interface debonding for 10%rfr25%, sos1 is preferred. When s is
within the range of [s1, s2], a shift of dominant fracture mode is observed. For example, when s¼65 mm, particle cracking clearly
dominates for f420%. This explains the peaking of KIC for R¼30 mm (sE2R) in the CFEM results in Fig. 9. A comparison of the
analytical results in Fig. 8 and the CFEM results in Fig. 9 shows that f has little effect on KIC when interfacial debonding is
dominant. In contrast, increasing f has a negative effect on KIC when particle cracking is dominant (Miserez et al., 2004).

It is well established that the fracture toughness material can be significantly enhanced through the introduction of
compliant interfaces between the matrix and reinforcement (Evans et al., 1991; Roger, 1998). Our CFEM results
demonstrate that crack deflection can always be induced if Q1(Q2)o1, regardless of the level of interface fracture energy
Fin (Parmigiani and Thouless, 2006). More extensive crack deflection tends to occur at lower Q1(Q2) values which leaves
the reinforcement intact. The effect of Q1(Q2) on fracture mechanisms is systematically captured by Eq. (18). As shown in
both plots in Fig. 10, particle cracking can be avoided when Q1(Q2)o1. As Q1(Q2) decreases, interface debonding gradually



Fig. 8. Proportions of interfacial debonding and particle cracking Hin and Hp for different values of s and f.

Fig. 9. Effect of reinforcement size and volume fraction on KIC. KIC values are calculated from CFEM simulations at different particle volume fractions and

particle sizes.

Fig. 10. Comparison of crack proportions Hin and Hp as calculated from CFEM simulations and predicted by Eq. (18).
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Fig. 11. CFEM results showing the effect of interfacial bonding strength on KIC.

Fig. 12. Effect of interfacial debonding and particle cracking on KIC.
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outweighs matrix cracking and becomes the dominant fracture mode. It should be noted that the best toughening results
can only be achieved without sacrificing the interfacial fracture energy. As demonstrated in Fig. 11, the improvement in
fracture toughness KIC is minor for cases among Q2 as discussed above, although there is a greater amount of interface
debonding compared with the cases with Q1. This is due to the fact that the interfacial fracture energy drops drastically as
Q2 decreases. Therefore, a proper balance between interfacial compliance and the activation of interface debonding must
be maintained to best improve KIC.

The model engendered by Eq. (18) accounts for the effects of both the geometric attributes (characteristic reinforcement size
s, volume fraction f, roundness r ) and the material attributes (interfacial bonding strength ratio of the interface between the
reinforcement and the matrix phase) of the microstructure on the proportion of each fracture mechanism. For the material
system analyzed, development of microstructure–fracture toughness relations entails quantitatively correlating the fracture
mechanisms with the fracture toughness. To illustrate the point, the KIC values of the microstructures in Figs.7 and 8 of Li and
Zhou (in press) are employed. The predicted proportions of interfacial debonding and particle cracking from the CFEM results
and the analytical model are compared in Fig. 12. Both the model and the CFEM data show that if the interfacial fracture energy
is kept constant as Fin¼78.5 J/m2 while the interfacial bonding strength ratio Q1 varies, the propagation fracture toughness KIC

can be improved by 37.2% as the proportion of interfacial debonding increases from approximately 5% to 50%. Moreover, an
increase in the fraction of particle cracking by the same magnitude has the opposite effect on KIC.

As discussed previously, the prediction of fracture toughness KIC through Eq. (3) requires the evaluation of x(Q, s, f),
which is defined as L/W or the crack length multiplication factor (CLMF). Here, L and W are the real arc length and
projected crack length, respectively. Since the model we proposed here only considers quasi-static crack propagation, x
only depends on heterogeneity-induced crack trajectory variation. In this sense, the crack length multiplication factor
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xZ1 for all cases. The minimum value of x is obtained at f¼0 and f¼1 when the whole microstructure is pure matrix or
reinforcement, respectively. In both cases, no heterogeneity-induced crack deflection exists and the propagating crack
follows the straight trajectory. x(Q, s, f) accounts for the influences of interfacial bonding strength, reinforcement size and
volume fraction on total crack length. The functional of x(Q, s, f) is fitted to the CFEM data using the empirical form

x Q , s, fð Þ ¼ ~x s,fð Þ ~xðQ Þ: ð19Þ

Specifically, ~xðQ Þ is fitted at s¼66.14 mm and f¼15%. To account for both the Q1 and Q2 cases, ~xðQ Þ takes the form

~xðQ Þ ¼
n1Qn2

1 ,

n3Qn4

2 :

(
ð20Þ

Similarly, ~xðs,f Þ is fitted at Q¼1, when ~x Q ¼ 1ð Þ is taken as a constant. To best represent the CFEM data, ~xðs,f Þ takes the
form of

~x s,fð Þ ¼
1�eD2

eD1�eD2
eD1f þ

eD1�1

eD1�eD2
eD2f ð21Þ

where D1¼m1sþm2 and D2 ¼m3sm4þm5:

The parameters n1¼1.191, n2¼�0.044, n3¼1.167, n4¼�0.047, m1¼0.0175, m2¼�1.483, m3¼�4.7�10�12, m4¼

6.695 are chosen such that the best fit to the data is achieved.
x(Q, s, f) can be used to quantitatively explain the counterintuitive phenomenon that microstructures with larger and

higher volume fractions of tougher reinforcement particles have lower fracture toughness KIC values (Fig. 9) even though
the fracture energy of the particles is 4.75 and 1.3 times of the matrix and interface, respectively. The physical implication
of x is demonstrated in Fig. 13. The boundary constraints of x are well satisfied since x¼1 resides at f¼0 and f¼1, as
expected. It should be noted that the CFEM data are only available within the solid portion of curves as represented by the
error bars. The dashed parts, which are extrapolated according to Eq. (19), also make physical sense. First of all, the
increase of reinforcement size tends to decrease x across the whole range of volume fraction f. This is in good agreement
with the criterion in Eq. (14) as well as the CFEM results in Fig. 9, since small reinforcements promote crack deflection and
in turn the tortuosity of the crack path. It can be argued that there exists an upper bound of reinforcement size beyond
which x approaches 1 (i.e., particle penetration essentially always occurs). As shown in Fig. 14, smaxE85 mm is predicted as
the upper bound of the reinforcement size. As s approaches Smax, volume fraction f becomes less important as x quickly
saturates to 1 due to diminishing crack deflection. Although decreasing s can effectively increase x, the lower bound of s

cannot be ignored. At s¼0, the material is essentially the pure matrix with f¼0. This means decreasing the reinforcement
size beyond the lower bound Smin adversely influences x. Currently, our CFEM model cannot precisely predict the value of
smin since the allowed minimum mesh size is 7 mm. However, for most engineering cases, the predicted trend is still valid.

It can be seen from Fig. 13 that the peaks of the curves gradually shift toward the right as s decreases. Specifically, the
maximum value of x at s¼40 mm, 60 mm and 80 mm are 1.4263, 1.3083 and 1.0735, for f¼31%, 23% and 11%, respectively.
The data indicate that particle cracking tends to dominate over interface debonding as f goes beyond each individual
thresholds. This again explains the trend in Fig. 9 that at s¼60 mm, KIC increases with f initially but follows the opposite
trend as f goes beyond 20%, which is very close to 23% as predicted above. Besides, the predicted f thresholds at s¼40 mm
and 80 mm also explain the fact that KIC either increases or decreases monotonically with f, since the lower and upper
bounds of f considered in our CFEM calculations are 10% and 30%, respectively. The dashed lines in Fig. 14 represent cases
Fig. 13. Effect of reinforcement size s on crack length multiplication factor x(Q, s, f).



Fig. 14. Effect of reinforcement volume fraction f on crack length multiplication factor x(Q,s,f).
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that are not considered in the CFEM calculations. It is shown that x continuously decreases with f and eventually overlaps
with the case at f¼0 when f increases to 100%. This is consistent with the above discussions and the trend demonstrated in
Fig. 13.

In addition to reinforcement size s and volume fraction f, the interfacial bonding strength Q also has a significant
influence on x. The cases considered in Fig. 15 have the same reinforcement size s¼66.14 mm and volume fraction f¼15%.
It is noted from Fig. 15(a) and (b) that x follows a very similar trend for both Q1 and Q2. x tends to reach 1 as crack
deflection is gradually eliminated by the increasing interfacial bonding strength. On the other hand, the maximum value of
x is around 2, suggesting that the largest possible crack length magnification is about two times the projected crack length.

On the other hand, HinFinþHmFmþHpFp is the equivalent dissipated energy per unit projected crack length. The
competition between this term and x determines the level of KIC. Fig. 15(c) and (d) show that the value of
HinFinþHmFmþHpFp is lowest when both Q1 and Q2 are extremely small, leading to diminishing improvement in KIC

even though the corresponding x tends to the highest possible value. The diametrically opposite effect but the same
outcome is observed for extremely large Q1 and Q2 values, when the CLMF x is the lowest and moderately high or high
HinFinþHmFmþHpFp values are seen.

Noted that, for both the Q1 and Q2 cases, the maximum value of KIC is obtained when x and HinFinþHpFpþHmFm are

balanced. Specially, the best improvement of KIC is achieved when the increase in x is not at the expense of decreasing
HinFinþHpFpþHmFm. To better understand this issue, the individual contributions from different fracture mechanisms to KIC

are shown in Fig. 16. For this purpose, note that the contribution to K2
IC from interface debonding is Ex Q , s, fð ÞFinHin= 1�n2

� �
,

from particle cracking is Ex Q , s, fð ÞFpHp= 1�n2
� �

,and from matrix cracking is Ex Q , s, fð ÞFmHm= 1�n2
� �

: Clearly in Fig. 16(a),

KIC is dominated by the effects of interface debonding when the matrix/reinforcement interface is compliant or relatively weak,
i.e., Q1A[10�5, 0.5]. In contrast, interface debonding makes the least contribution to KIC when Q2A[10�5, 0.5], as illustrated in
Fig. 16(b). This is due to the rapid decay of Fin when Q2o1. On the other hand, the contribution from particle cracking is the
largest in both sets of data when Q1 or Q2¼10.

Most importantly, Fig. 16(a) shows that the maximum contribution from particle cracking (which occurs at Q1¼10) is
less than half of the maximum contribution from interface debonding (which occurs near Q1E10�3) even though Fp¼1.3
Fin (baseline case). The fundamental reason is that it is more energetically favorable for cracks to propagate along the path
that requires the lowest fracture energy. Crack deflection into the matrix/reinforcement interface causes the crack
trajectory to become more tortuous, leading to higher x. This significantly increases the crack surface area and
compensates for the relatively lower fracture energy of the interface. Indeed, as shown in Fig. 10(a), the value of Hin

can be 16 times the value of Hp (note that the maximum value of the ratio between the two quantities occurs at the left
end of the curves), making interface debonding by far the dominant mechanism for altering energy dissipation. Since Fin

does not change with Q1 for this case, the best strategy to improve KIC is to maximize Hin by promoting crack deflection
through the optimization of Q1 rather than to increase the fracture energy of reinforcement Fp or the particle volume
fraction f. The latter two measures can help, but their effects are very limited as shown in Fig. 17 and Fig. 14. When the
cases with varying Q2 values are considered, maximizing Hin through the optimization of Q2 can still improve KIC. However,
the effect becomes less pronounced as the contribution of Hinto the increase of x is much less significant in light of the
decrease in Fin.

In conclusion, the analytical results discussed in this paper and the CFEM results of Li and Zhou (in press) show that the
most effective way to improve the fracture toughness of two-phase ceramics composites is to create compliant (ductile)



Fig. 15. Effect of interfacial bonding strength ratios, (a). Q1 on x at constant interface fracture energy, (b). Q2 on x at constant critical cohesive separation

distance, (c). fracture energy releases per unit crack length for case (a), (d). fracture energy released per unit crack length for case (b), (e). corresponding

KIC values for case (a), and (f). corresponding KIC values for case (b).
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interfaces with high interfacial fracture energy levels. For the conditions and material system analyzed, the maximum
value of KIC occurs at approximately Q1¼10�3. This result also suggests that currently available ceramic materials (Q1 or
Q2E1) are not optimized in terms of KIC and room for improvement through means identified here exist. In addition to
appropriately configured bonding between the constituents, fracture toughness can also be enhanced through micro-
structure size scale refinement and the use of reinforcement particles with more rounded morphologies. The model
developed can be used to guide the microstructure design of ceramic composites.

5. Summary

An energy-based semi-empirical model is developed to quantify the results of CFEM predictions of fracture toughness
of two-phase ceramic composites and to provide an analytical relation between the fracture toughness and microstructure.
This semi-empirical model is based on the analytical model of Hu and Hutchinson for the behavior of a crack approaching a
planar bi-material interface and accounts for the effects of statistical attributes of microstructures (two-point correlation
function, particle size, particle volume fraction, particle shape and phase distribution) and material properties (constituent
properties and interfacial bonding strength) by quantifying the probability for the activation of different fracture
mechanisms (crack deflection and crack penetration of reinforcement).



Fig. 16. Contributions of individual fracture mechanism to the overall fracture toughness.

Fig. 17. Effect of reinforcement toughness on KIC.
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For ceramic composites systems like the Al2O3/TiB2 composites analyzed here, the competition between crack
deflection and reinforcement penetration plays the most important role in determining the dominant fracture mode
and in turn the fracture toughness. Results of CFEM calculations and predictions of the semi-empirical model show that
both microstructure and constituent properties can significantly influence the fracture behavior and combine to determine
the overall fracture toughness through the activation of different fracture mechanisms. The analytical model provides
deeper insights into the fracture process as it quantitatively predicts the proportion of each fracture mechanism in the
heterogeneous microstructure. To enhance the propagation fracture toughness, fine microstructure size scale, rounded
reinforcement morphology and appropriately weak bonding strength should be introduced to promote interface
debonding and discourage particle cracking. There is an optimal level of interfacial stiffness that maximizes the fracture
toughness. These conclusions can be used in the selection of materials and the design of new materials with tailored
properties.
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