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The evaluation of macroscopic material parameters such as fracture toughness as

functions of microstructural attributes is a fundamental issue in material science.

The task requires the quantification of both microstructure and material response.

Currently, no systematic approach other than experiments exists for establishing

microstructure–fracture toughness relations for materials. In this paper, we present a

multi-scale computational framework based on the cohesive finite element method

(CFEM) for predicting fracture toughness of materials as a function of microstructure.

This framework provides a means for evaluating fracture toughness through explicit

simulation of fracture processes in microstructures. The approach uses the J-integral,

allowing fracture toughness to be calculated for microstructures with random hetero-

geneous phase distributions and fracture processes with arbitrary crack paths or micro-

crack patterns. Calculations carried out concern two-phase Al2O3/TiB2 ceramic compo-

sites and focus on the effects of constitute behavior, phase morphology, phase

distribution, phase size scale, and interphase bonding on fracture toughness. Results

show that microstructure and constituent properties can significantly influence fracture

behavior and combine to determine the overall fracture toughness through the

activation of different fracture mechanisms. In particular, a combination of fine

microstructure size scale, rounded reinforcement morphology, appropriately balanced

interphase bonding strength and compliance can best promote desirable crack–

reinforcement interactions and lead to enhanced fracture toughness.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Microstructural constitutes, phase morphology and phase distribution can lead to significantly different fracture resistance
values (Casellas et al., 2003; Curry and Knott, 1976; Hall et al., 1994). Microstructural design is an important approach for
enhancing material behavior at the macroscopic scale. Tasks in this regard include proper characterization of microstructures and
quantitative correlation of microstructural attributes with overall material response. Most analytical models allow the
macroscopic response of materials to be estimated but yet do not allow the predictions of response that are unknown a priori.
Such models usually require extensive experimental data to calibrate parameters that have little or no physical significance (Zohdi
and Wriggers, 2008). Experimental studies can quantify macroscopic behavior and establish response–microstructure relations,
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Nomenclature

A area of reinforcement particle
Cl, Cs, Cr longitudinal, shear and Rayleigh wave speeds
D crack propagation distance
dmax maximum distance of a reinforcement

particle
Ei Young’s modulus (i¼0 or 1)
f volume fraction
F fracture energy
J J-integral
Ki bulk modulus (i¼0 or 1)
Ki

IC initiation fracture toughness
KIC propagation fracture toughness
K0 normalization factor
KL lower bound fracture toughness
mi shear modulus (i¼0 or 1)

n number of reinforcement particles
l state variable for interfacial separation
Pij two-point correlation functions (i¼0 or 1;

j¼0 or 1)
r mean reinforcement particle roundness
Q1(Q2) interfacial bonding strength ratio
R particle radius
s characteristic reinforcement size
Tin

max interfacial bonding strength
T0

max baseline reference bonding strength
X probability of fracture
Dtc critical tangential separation
Dnc critical normal separation
v imposed boundary velocity
vi Poisson’s ratio (i¼0 or 1)
V crack speed
W strain energy density
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but cannot be used to explore material configurations not yet in existence. The trial-and-error empirical approach for materials
development is associated with high cost and long cycles. Computational modeling and simulation can provide an alternative and
allow exploration of material configurations not yet in existence. Zhai et al. (2004) developed a computational framework that
allows representation of material microstructure at different length scales and explicit account of different deformation and
fracture mechanisms. Using this framework, we have developed an approach for evaluating the overall fracture toughness of
materials based on a resolution of deformation and fracture processes at the microstructure level, accounting for microscopic
heterogeneity and hierarchy. This approach uses the J-integral to quantify the fracture resistance as a function of microstructural
attributes. Explicit tracking of fracture in the form of crack/microcrack initiation, propagation and coalescence and the evaluation
of the J-integral throughout the fracture process allow the evolutions of the driving force for fracture and fracture resistance
of the materials to be assessed. For brittle materials with linear elastic constituents, the overall fracture toughness KIC of the
material can be obtained through J for various material configurations, permitting microstructure–fracture toughness relations to
be established.

The cohesive finite element method (CFEM) is employed to track fracture processes. Within this framework, two
approaches exist for resolving fracture processes when crack paths are not known in advance. One is to insert cohesive
elements ahead of the crack tip as crack develops (Pandolfi and Ortiz, 2002; Yu, 2001). This method can avoid cohesive-
surface-induced stiffness reduction of the overall model when the traction–separation relation has finite initial stiffness.
However, it is computationally expensive and requires specific fracture initiation criteria that are extrinsic to the overall
finite element model. Another method entails embedding cohesive surfaces along all finite element boundaries as part of
the physical model (Needleman, 1990; Xu and Needleman, 1985, 1994; Zhai et al., 2004). The cohesive surfaces permeate
the whole microstructure as an intrinsic part of material characterization. Constitutive relations for the bulk phases and
cohesive surfaces are specified separately. The cohesive relation allows damage and crack surface separation to be
considered. Fracture emerges as a natural outcome of the deformation process without the use of any failure criterion.
Although cohesive-surface-induced stiffness reduction is inevitable for this method if a cohesive relation with a finite
initial stiffness is employed, proper choice of cohesive surface stiffness and finite element size (Tomar et al., 2004) can
effectively alleviate and minimize its influence on computational results.

To characterize the microstructures analyzed, the two-point correlation functions (Berryman and Blair, 1986) are used.
These functions allow attributes of microstructures such as the second-phase reinforcement size, volume fraction and
spatial distribution to be readily extracted. The quantification is used to generate microstructural samples with
independently varying characteristics so that the effect of each attribute on fracture toughness can be evaluated
(Tewari et al., 2004). In addition, the two-point correlation functions provide a means to statistically parameterize the
probability of crack interactions with these heterogeneities. This quantification lends itself to the establishment of
relations between the statistical attributes of microstructure, fracture mechanism and the fracture toughness of the
material. In addition to the two-point correlations functions which primarily characterize the distribution of phases and
may be insensitive to the morphology of phases in a microstructure, our studies also reveal that additional descriptors or
parameters quantifying the morphology of phases are needed to sufficiently quantify and distinguish between different
microstructures with varying reinforcement sizes and shapes. The influence of such a parameter (i.e., the roundness of
reinforcement particles) on the fracture toughness is also discussed.

Besides the geometric attributes of the microstructure, the constituent properties also greatly influence the overall
fracture toughness. Specifically, the effects of the toughness of second-phase reinforcement and interfacial bonding
characteristics are also analyzed through systematic variations of relevant parameters.



Y. Li, M. Zhou / J. Mech. Phys. Solids 61 (2013) 472–488474
Although the framework developed here can be applied to any material system in principle, computations in this paper
concern Al2O3/TiB2 ceramic composites. These two-phase materials consist of an Al2O3 matrix and a TiB2 reinforcement
phase. Microstructures with more than two phases can also be analyzed. Based on the numerical results, relations between
microstrucutral parameters and fracture toughness are established. These relations can be used for the selection of
materials and the design of new materials with tailored properties.

2. CFEM-based multi-scale framework

Models at the macrostructural scale cannot account for material heterogeneity at the microstructural scale. The use of
homogenized material properties yields results that do not reflect stochastic variations of material behavior which is
intrinsic at the microstructural level. Such models cannot and do not attempt to explain the statistical variation in
quantities such as KIC (Wallin, 1984). On the other hand, models at the microstructual scale account for material
heterogeneity and resolve different deformation and failure mechanisms. Such models have fine resolutions and, as a
result, are computationally intensive and are impractical for use at the structural scale.

A framework that combines both scales can overcome the shortcomings of each type of models. For example, the
configuration illustrated in Fig. 1 allows explicit representation of microstructures and account of microstructural level of
deformation, damage and failure mechanisms, while allowing macroscopic conditions such as controlled loading and
structural response to be considered at the same time. This framework provides a means for calibrating model parameters
at the microscale through macroscale responses which can be easily measured in experiments. More importantly, it allows
macroscopic response measures such as KIC to be evaluated as functions of microstructure by calculating the J-integral
along an arbitrary contour within the homogenized region, as indicated by the dashed lines in Fig. 1.

The edge-cracked square specimen under Mode I tensile loading in Fig. 1 has a size length of 3.65 mm. The
microstructure region has a length of 2 mm, width of 1 mm and a pre-crack length of 0.73 mm. A boundary velocity
between v¼ 5�10�4 mm/s and v¼ 15 mm/s is imposed at the top and bottom edges to effect tensile loading. The
remaining edges of the specimen are traction-free. Conditions of plain strain are assumed to prevail.

2.1. Constitutive behavior of constituents

Both the Al2O3 and TiB2 phases in the composites follow isotropic linear elastic constitutive relations. Specifically, the
constitutive law is

r¼
E

1þn eþ
nE

ð1þnÞð1�2nÞ trðeÞI, ð1Þ

where r and e are the stress and strain, respectively, E is Young’s modulus. n is Poisson’s ratio, tr(e) is the trace of e and I is
the second order identity tensor. The values of the material constants for the constituents are summarized in Table 1.

2.2. Constitutive behavior of interfaces

The interface between the constituents and all potential crack faces within each constituent are assigned a constitutive
law for cohesive surfaces. This interfacial constitutive law takes the form of a bilinear relation between traction and
interfacial separation, as illustrated in Fig. 2. The bilinear law used can be regarded as a generalized version of those with
Fig. 1. Specimen configuration used in the analysis.



Table 1
Constitutive parameters for bulk constituents and cohesive surfaces.

Compound Density (kg/m3) KIC (MPa
ffiffiffiffiffi
m
p

) E (GPa) v Tmax (GPa) Dtc, Dnc (nm) ^ (J/m2)

Al2O3 3990 2.7 340 0.23 0.48 90 21.5

TiB2 4520 7.2 500 0.12 0.70 292 102.2

Interface 0.60 262 78.5

( ) maxσ /Tλ

A

B
P

C

0η ulλ λ

1

Fig. 2. Bilinear traction–separation law.
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irreversibility given by Camacho and Ortiz (1996) and Ortiz and Pandolfi (1999). However, as in Espinosa et al. (2000),
additional parameters are needed to define the finite initial stiffness of the cohesive surfaces and the irreversibility of

separation with damage. This law is derived from a potential F which is a function of separation vector D through a state

variable defined as l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDn=DncÞ

2
þðDt=DtcÞ

2
q

. This variable describes the effective instantaneous state of mixed-mode

separations. Here, Dn ¼ nUD and Dt ¼ tUD denote, respectively, the normal and tangential components of D, with n and t
being unit normal and tangent vectors. Dnc is the critical normal separation at which the cohesive strength of an interface
vanishes under conditions of pure normal deformation (Dt¼0). Similarly, Dtc is the critical tangential separation at which

the cohesive strength of an interface vanishes under conditions of pure shear deformation (Dn¼0). l tracks instantaneous

mixed-mode separations during both loading and unloading. Apparently, l¼0 corresponds to D¼0 (undeformed state or

fully unloaded state) and lZ1 implies complete separation, i.e. total debonding of the cohesive surface pair.
A parameter Z¼max{Z0, lul} is defined to account for the irreversibility of surface separations. As illustrated in Fig. 2, Z0

is the initial value of Z which defines the stiffness of the original undamaged cohesive surface and lul is the hitherto
maximum value of l at which an unloading process was initiated.

The specific expression for potential s is of the form

F¼Fðl,ZÞ ¼

F0
1�Z
1�Zo

� �
l2

Z

� �
, if 0rlrZ,

F0
1�Z
1�Zo

� �
1� 1�lð Þ

2

1�Z

� �
, if Zrlr1

0, if l41:

,

8>>><
>>>:

ð2Þ

Based on the above relation, the traction is defined as

Tn ¼ sðl,ZÞ Dn

l@Dnc
and

Tt ¼ sðl,ZÞ aDt

l@Dtc
,

8<
: ð3Þ

yielding the normal and shear traction components as

T ¼
@F
@D

ð4Þ

with

a¼ Dnc

Dtc
: ð5Þ

Therefore,

s¼

Tmax
1�Z
1�Zo

� �
l
Z

� �
, if 0rlrZ,

Tmax
1�Z
1�Zo

� �
1�l
1�Z

� �
, if Zrlr1

0, ifl41:

,

8>>><
>>>:

ð6Þ
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The work per unit interface area for an arbitrary separation process is

Z Dc

0
TUdD¼Fð1,ZÞ ¼ 1

2
Tmax

n Dnc ¼
1

2
aTmax

t Dtc : ð7Þ

CFEM models with cohesive traction–separation laws with finite initial stiffness have two competing requirements on
element size. The upper bound requires that the element size must be small enough to accurately resolve the stress
distribution inside the cohesive zones at crack tips. The lower bound, on the other side, requires the cohesive surface
induced stiffness reduction be small, such that the wave speed in the solid is not significantly affected due to the presence
of the cohesive surfaces. For the conditions of this paper, the preferred range of the element size is 7 mm5h514 mm,
allowing the convergence criterion in Tomar et al. (2004) to be satisfied.
2.3. Model structure

The parameters for the bilinear cohesive law are chosen such that the work of separation matches experimentally
measured fracture toughness values for the corresponding constituent. For Al2O3/TiB2 composites, three types of cohesive
elements exist: Al2O3–Al2O3, TiB2–TiB2 and Al2O3–TiB2. Xu and Needleman (1994) suggested that the maximum traction
Tmax should be between E/100 and E/200. Therefore, Dnc and Dtc can be determined from Eq. (7). For linear elastic
materials, F¼GIC¼ JIC¼[(1�n2)/E]KIC, where KIC is the fracture toughness of the material in question. According to the
experimental results reported by Logan (1996) and Wiederhorn (1984), the KIC values of the matrix Al2O3 and the
reinforcement TiB2 are chosen as 2.7MPa

ffiffiffiffiffi
m
p

and 7.2MPa
ffiffiffiffiffi
m
p

, respectively. The cohesive strength Tmax for each phase is
calibrated accordingly to satisfy the fracture toughness of the single phase. Since the experimental KIC value for the
interface is not yet available in the current literature, its cohesive strength Tmax is considered as the average value of the
matrix and reinforcement cohesive strength in this paper. All the constitutive parameters for the bulk constituents and
cohesive surfaces are listed in Table 1.

The effective properties for the homogenized region are estimated by using the Mori–Tanaka method. Specifically, the
effective bulk and shear moduli are

K ¼ K0þ
f ðK1�K0Þð3K0þ4m0Þ

3K0þ4m0þ3ð1�f ÞðK1�K0Þ
and

m¼ m0þ
5fm0ðm1�m0Þð3K0þ4m0Þ

5m0ð3K0þ4m0Þþ6ð1�f Þðm1�m0ÞðK0þ2m0Þ

:

8<
: ð8Þ

Here, f is the volume fraction of the TiB2 phase, Kr and mr are the bulk and shear modulus, respectively for Al2O3 (r¼0) and
TiB2 (r¼1).

The effective Young’s modulus r and Poisson’s ratio s for the homogenized region are, respectively,

E¼ 9Km
3Kþm

and

n¼ 3K�2m
6Kþ2m

:

8><
>: ð9Þ

The variations of E and n as functions of f are illustrated in Fig. 3.
Fig. 3. Homogenized material properties at different TiB2 volume fractions.
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3. J-integral-based fracture toughness evaluation

The TiB2 and Al2O3 phases are assumed to be isotropic and linear elastic. For this type of material, the longitudinal,
shear and Rayleigh wave speeds are (Freund, 1998) as follows:

Cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1�nÞ

rð1þnÞð1�2nÞ

s
, Cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2rð1þnÞ

s
, Cr ¼ Cs

0:862þ1:14n
1þn

: ð10Þ

Here, r¼ 4200 kg=m3 is taken as the homogenized material density. E and v are calculated according to Eq. (9).
Therefore, the longitudinal, shear and Rayleigh wave speeds are in the range of [9688, 10286] m/s, [5737, 6426] m/s and
[5243, 5812] m/s, respectively. The J-integral is equivalent to the energy release rate G and can be related to the stress
intensity factor K via (Anderson, 1995) the following:

K2
¼

J

AðVÞ

E

1�n2
, ð11Þ

where V is the crack speed and AðVÞ ¼ V2b1=ð1�nÞC
2
s D with b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðV=ClÞ

2
q

, b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðV=CsÞ

2
q

and D¼ 4b1b2�ð1þb
2
2Þ

2.
Note that as V-0, A(V)-1.

Crack propagation can be dynamic even under quasistatic loading (Duffy et al., 1988; Toshiro et al., 1988). To account
for inertia effects, a fully dynamic deformation formulation is used. Within this framework, the path-independent
J-integral is (Lo and Nakamura, 1993; Moran and Shih, 1987; Nakamura et al., 1985) as follows:

J¼

Z
G

Z t

0
r : deþ

1

2
r _uU _u

� �
dx2�tU

@u

@x1
ds

� �
þ

Z
A

r €uU
@u

@x1
�r _uU

@ _u

@x1

� �
dA, ð12Þ

where t is the traction on a surface with normal N, u is the displacement, e denotes the strain and r is the mass density.
For the model shown in Fig. 1, contours for J evaluation are solely within the homogenized part of the specimen where

no cohesive elements are used. Due to the path-independent property of J-integral, the results extracted from different
contours are very close to each other. In the remainder of this paper, we will use the average value of J from four different
contours in order to best eliminate numerical error.

For steady state crack growth, the driving force represented by J balances out the fracture resistance, allowing the
fracture resistance to be evaluated through Eq. (11). To calculate J and in turn K, boundary velocities between
5�10�4 mm/s and 15 mm/s are applied. The results for a microstructure with circular reinforcement particles are shown
in Fig. 4. Fig. 4(a) shows J/A(V) as a function of crack length and Fig. 4(b) illustrates the corresponding histories of crack
speed. Reflecting the wide range of boundary loading velocities, the crack speeds for the different cases span from
approximately 28 m/s for v¼5�10�4 mm/s, 392 m/s for v¼5�10�3 mm/s, 1295 m/s for v¼5�10�2 mm/s to approxi-
mately 3600 m/s for v40.5 mm/s. The highest value is approximately 60% of the Rayleigh wave speed of the composite.
Upon the arrival of the loading wave at the crack tip region, the J/A(V) starts to increase rapidly. When the value reaches
point A, the crack begins to propagate slowly and steadily (crack speed below 25 m/s). At point B, both J/A(V) and the crack
speed increase rapidly and quickly reach point C. Beyond point C, the crack speed oscillates around an average value as the
crack encounters and passes reinforcement particles. Although the instantaneous crack speed is not steady over short
distances, the average crack speed is quite steady over longer distances between points C and D. Also, at the lower crack
speeds the magnitudes of the oscillations in both the crack speed and J/A(V) are lower. At the lowest speed of
approximately 28 m/s, the oscillation is the lowest and the propagation of the crack can be approximately regarded as
quasistatic. The time it takes for stress waves to traverse the distance between the crack tip and the boundary of the
specimen is approximately 0.2 ms. In contrast, time interval for crack propagation is approximately 149.6 ms. This
Fig. 4. (a) Comparison of J/A(V) under different loading rates, (b) Comparison of crack speed under different loading rates.
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specimen design allows the calculations to approximate conditions of quasi-static loading. It is important to note that
J/A(V) for all the cases essentially coincide, even though the crack speed spans three orders of magnitude. This is expected
as the brittle ceramic system considered here is rate-independent. This observation suggests that the fracture toughness
values obtained may be regarded as both quasistatic and dynamic, within the fully elastic material constitutive framework
considered here. Since all loading velocities give consistent results, unless otherwise noted most calculations in this paper
are carried out with v¼ 5 mm/s for computational efficiency.

The fracture toughness of composites may not be sufficiently captured by a single parameter, as argued by Manoharan
and Kamat (1993). The issue is even more pronounced for processes of crack initiation and propagation. Here, we measure
both the initiation toughness Ki

IC and the propagation toughness KIC from the evolution of J. The initiation toughness is
measured at the critical point where the crack begins to propagate [point A, Fig. 4(a)]. The propagation toughness is
obtained from the average J value over the distance the crack traverses a sufficiently representative part of the
microstructure, between points C and D in Fig. 4(a).

To illustrate the fracture process studied, Fig. 5 shows six snap shots of the crack propagation process in a
microstructure with circular TiB2 reinforcement at a loading velocity of v¼ 5 mm/s. The corresponding histories of J

and K are shown in Fig. 6. Fracture initiates in the Al2O3 matrix at 105.0 ms [Fig. 5(a)], this event defines the initiation
Fig. 5. Crack propagation in a microstructure with circular reinforcement.

Fig. 6. Evolution of J and K during the crack propagation process in Fig. 5.
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toughness Ki
IC . The crack is arrested by a TiB2 particle and pauses at the Al2O3/TiB2 interface for approximately 42.5 ms

[Fig. 5(b)]. During the pause, J increases rapidly. At approximately 149.2 ms [Fig. 5(c)], as a result of the higher level of
driving force J, the crack penetrates the TiB2 particle. Subsequently, the crack propagates rapidly, causing J (and therefore
K) to plateau for the remainder of the analysis. The average value of K during this period is taken as the propagation
toughness KIC.

4. Results and discussion

Microstructure and constituent properties determine the overall fracture behavior through the activation of different fracture
mechanisms, including matrix cracking, interface debonding and particle cracking. Real microstructures with stochastic
distributions of phases and computationally generated microstructures with systematically and independently varying
attributes are quantified and used in the analysis. Both sets of microstructure samples are illustrated in Figs. 7 and 8. We
will first discuss the effects of microstructure on fracture toughness and then discuss the effects of constituent properties.

4.1. Statistical characterization of microstructure

Microstructural attributes such as reinforcement size, reinforcement volume fraction, reinforcement morphology, and
distributions of the phases significantly influence the material behavior and are, therefore, of primary consideration in
material design. To provide a characterization of the microstructures in the context of fracture analysis, we consider the
two-point correlation functions which are often used to quantify microstructures (Tewari et al., 2004; Torquato and
Haslach, 2002). The functions measure the probability of finding a given combination of phases over given distances.
Specifically, in 2D microstructures with two phases such as the one shown in Fig. 9, the function Pij denotes the probability
for randomly placed vectors of a given length to start in phase i (i¼0 or 1) and ends in phase j(0 or 1). It is noticed that only
three of the four two-point correlation functions are independent since P00þP01þP10þP11¼1. In this paper, the matrix is
defined as phase 0, and the reinforcement is defined as phase 1. f Denotes the volume fraction of the reinforcement phase.

Fig. 10(a) shows the two-point correlation representation (P01) of a set of microstructures with randomly distributed
uniform circular particles. The peak of each curve occurs at a distance equal to the particle diameter as shown in the inset.
The two-point correlation functions can be quantified by the following functions:

P11 ¼ ðf�f 2
Þe�ðD=sÞ þ f 2,

P00 ¼ ½ð1�f Þ�ð1�f Þ2�e�ðD=sÞ þð1�f Þ2, and

P01 ¼ P10 ¼ ð1�P11�P00Þ=2:

8>><
>>: ð13Þ
Fig. 7. Design space of microstructures with randomly distributed, non-overlapping circular reinforcements. Twenty random instantiations (samples) of

each microstructure are used in the calculations to obtain a statistical characterization of the result for each case. * f is the reinforcement volume fraction.

s and r are characteristic reinforcement size and roundness, respectively, as defined in Section 4.1.



Fig. 8. Design space of microstructures with various reinforcement shapes. Twenty random instantiations (samples) of each microstructure are used in

the calculations to obtain a statistical characterization of the result for each case. * f is the reinforcement volume fraction. s and r are characteristic

reinforcement size and roundness, respectively, as defined in Section 4.1.

Fig. 9. Two-point correlation function for a two-phase microstructure.
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Here, s is a parameter representing the characteristic size of the reinforcement. For microstructures with randomly
distributed circular particles of the same diameter, s is equal to the diameter. P01 can be regarded as the geometric
probability of encountering the reinforcement phase by a crack of a certain length that is propagating in the matrix. The
area underneath the P01 curve, which is denoted as F01 in Fig. 10(b), can be taken as a measure for the cumulative
interactions with the reinforcement phase by a straight crack over its course of propagation. Obviously, F01 becomes linear
beyond a certain distance (Dcha) at which P01 reaches its long-distance limit of [1� f2

�(1� f)2]/2. This distance (Dcha) is
taken as a characteristic length for the microstructure. For crack lengths below Dcha, the probabilistic interactions of a
crack with the reinforcement phase sensitively depends on not only the volume fraction of the reinforcement, but also the
phase morphology and phase size scale. Beyond Dcha, the long-term geometric probability of a straight crack encountering
the reinforcement phase depends only on the volume fraction of the reinforcement (since the values of Pij beyond Dcha

depends only on f), not phase morphology or size scale. Naturally, to sufficiently capture the fracture behavior of different
macrostructures, crack propagations over distances longer than the characteristic lengths of the microstructures must be
considered. In the analyses carried out here, the characteristics lengths of the microstructures are less than 100 mm and



Fig. 10. (a) Interpretation of P01 and (b) F01.
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the total distances of crack propagation are 1.5–2 mm. To compare the propagation toughness of different microstructures,
the F01 values at the same crack propagation distance of 800 mm are used.

4.2. Correlation between fracture toughness and microstructural attributes

Microstructural sample set 1, as listed in Fig. 7, is employed to study the correlations between the two-point correlation
parameter F01 and fracture toughness. Note that this set has systematically varying particle radius (R¼ s/2¼20 mm, 30 mm and
40 mm) and volume fraction (f¼10%, 15%, 20% and 25%). For each combination of particle size and volume fraction, 20 randomly
generated microstructural instantiations are used to obtain a statistical characterization of the stochastic nature of the failure
processes at the microstructure level. For each microstructure setting (each combination of R and f), the probability of fracture
initiation is measured in terms of Ki

IC and the probability of catastrophic fracture is measured by the propagation toughness KIC.
Both measurements are through the three-parameter Weibull distribution function (Weibull, 1939) in the form of

XðKÞ ¼ 1�e�FðKÞ, whereFðKÞ ¼
K�KL

K0

� �m
, KLrKo1;

0, 0rKrKL:

8<
: ð14Þ

Here, X is the probability of fracture, K can be either the initiation toughness Ki
IC or propagation toughness KIC, m quantifies the

scatter of K, K L is the lower bound fracture toughness and K 0 is the normalization factor. The parameters K L, K 0 and m are
obtained through a linear regression fit to the 20 data points for each microstructural setting which involves 20 different
instantiations.

The Weibull distribution function has been widely used in reliability analysis due to its versatility and relative
simplicity (Doig, 1985; Wallin, 1993; Wallin et al., 1992). The shape (defined by m), size (defined by K 0) and finite lower
bound limit (at W(K)¼95%) of the curve make it a better representation of fracture toughness distribution than the normal
distribution function whose symmetry about the mean can result in physically unrealistic predictions of the lower bound
values (Wallin, 1984).

As shown in Fig. 11, microstructure affects KIC much more than Ki
IC . The finest reinforcements give rise to the highest

propagation toughness, but have the least influence on the initiation toughness. The opposite trends in influence have to
do with how cracks interact with particles. If a large particle happens to be at the tip of the pre-crack, a higher level of
stress is required to initiate the crack and, consequently, the initiation toughness is higher. Such events are less frequent,
as shown in Fig. 11. On the other hand, a propagating crack is more likely to penetrate a large particle, causing immediate
catastrophic failure of the material and limited improvement of the propagation toughness.

It is worth noting in Fig. 12 that the KIC range obtained from the CFEM framework is in good agreement with the
experimental results reported by Logan (1996) which are also shown. Increasing the reinforcement volume fraction f always
enhances Ki

IC , but does not always enhance KIC. As shown in Fig. 12, KIC decreases as f increases when the particles are large
(R¼40 mm). At R¼30 mm, KIC is the highest for f¼20% and is lower at both f¼10% and f¼30%. The effect of f becomes less
pronounced when R is further decreased to 20 mm. The above trends are result from relative shifts in the three fracture
mechanisms (matrix cracking, interface debonding and particle cracking) as the microstructure changes. Specifically, it has been
reported that particle cracking is more prevalent in composites with higher particle volume fractions (Kumai et al., 1991). The
lower fracture toughness values at larger particle sizes are a result of an increased likelihood of particle cracking (Evans, 1990;
Lin et al., 1986). Although crack penetration through a particle requires a higher instantaneous K value than crack growth
through interfacial debonding, particle cracking usually signifies immediate catastrophic failure. Small particles, on the other
hand, promote sustained crack deflections through interfacial debonding as illustrated in Fig. 13. Such processes increase the
tortuosity of crack trajectory and in turn enhance the fracture resistance.

As discussed above, the fracture toughness of a material is not a deterministic quantity even if the microstructure
contains uniformly distributed reinforcement particles of the same radius (Kobayashi et al., 1986). Therefore, a



Fig. 11. Fracture probability distributions for microstructures with randomly distributed, non-overlapping circular reinforcement particles. The

distributions are obtained from twenty random instantiations (samples) of each microstructure.

Fig. 12. Propagation toughness as a function of reinforcement size and volume fraction. The error bars indicate scatter of results obtained from twenty

random instantiations (samples) of each microstructure.
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probabilistic approach which accounts for microstructural morphology is needed. Fig. 14 shows the propagation toughness
Ki

IC as a function of the two-point correlation parameter F01 measured at a crack propagation distance of D¼800 mm. It can
be seen that microstructures with finer reinforcements (higher values of F01) have higher fracture toughness values due to
their higher probability to cause crack arrest.

It is important to point out that so far we have only considered microstructures with perfectly circular particles. It is possible
for different microstructures to have very similar two-point correlation functions. A case in point is shown in Fig. 15. The
microstructures with elliptical, square and circular shaped reinforcement particles are generated from the real microstructure as
listed in Fig. 8. All four microstructures have the same reinforcement volume fraction (15%), reinforcement orientation and size
distribution. The nearly identical two-point correlation curves point to the need to quantify the effect of phase morphology or
particle shape for particle-reinforced composites. Indeed, as we will discuss later, while the two-point correlation function
measures the geometric probability for a crack to encounter the reinforcement, the shape parameter measures how the crack
interacts with the reinforcement particles. Naturally, both aspects are important.

The mean reinforcement roundness r of a microstructure is defined as

r¼ 1

n

Xn

i ¼ 1

ri ¼
1

n

Xn

i ¼ 1

4Ai

pðdi
maxÞ

2
ð15Þ

to quantify the circularity and surface irregularities of reinforcements in a microstructure (Russ, 2007; Seul, 2000;
Valiveti and Ghosh, 2007). Here, Ai, di

max and ri are the area, maximum distance and roundness of the ith reinforcement
particle, respectively. n Is the total number of particles. Fig. 16 compares the distributions of the particle roundness values



Fig. 13. The effect of reinforcement size on fracture mode.

Fig. 14. Correlations between Tmax and crack interaction parameter F01. The scatter of results represents variations among twenty random instantiations

(samples) of each microstructure.
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of the four microstructures. The microstructure with elliptical reinforcement best approximates the real microstructure in
terms of two-point correlation (Fig. 15) and particle morphology (Fig. 16). As a result, this microstructure has very similar
KIC values, as shown in Fig. 17. In contrast, the microstructures containing reinforcements with higher roundness values
(circles and squares) show slightly different mean fracture toughness values. As we will see later, this is due to more
extensive crack deflection associated with the higher-roundness microstructures.
4.3. Effects of constituent attributes on fracture toughness

The forgoing analyses show, from a morphological perspective, that particle cracking negatively influences fracture
resistance, especially in the initial stage of crack–reinforcement interactions. It is equally important to identify the
correlation between material attributes and the activation of fracture mechanisms. Here, we study the effects of



Fig. 15. Similarity between the two-point correlation functions of microstructures with different reinforcement particle shapes.

Fig. 16. Comparison of the roundness distributions for microstructures with different reinforcement shapes.

Fig. 17. Effect of mean roundness on KIC. The error bars indicate scatter of results obtained from twenty random instantiations (samples) of each

microstructure.
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Fig. 18. Effect of reinforcement toughness on KIC.
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reinforcement toughness and compliance of the interface between the reinforcement phase and the matrix on fracture
toughness.

Increasing the toughness of the reinforcement Fp has only a limited impact on the overall fracture toughness. It can be
seen from Fig. 18(a) that the increase of fracture resistance tends to saturate beyond the Fp value of 120 J/m2. Specifically,
a 200% increase in Fp from 300 J/m2 to 900 J/m2 only leads to a 16% increase in KIC from 4:4 MPa

ffiffiffiffiffi
m
p

to 5:2 MPa
ffiffiffiffiffi
m
p

.
In contrast, a 200% increase in Fp from 40 J/m2 to 120 J/m2 leads to an increase in KIC of 31% from 3:2 MPa

ffiffiffiffiffi
m
p

to
4:2 MPa

ffiffiffiffiffi
m
p

. A look at crack paths provides insight into this. Fig. 18(b) shows that particle cracking occurs even under
unrealistically high Fp values, if the interfaces are well-bonded. Obviously, increasing Fp beyond a certain value has no
significant impact on crack path, resulting in diminishing gains in KIC.

On the other hand, interfacial bonding can significantly influence the dominant fracture mechanism and, consequently,
alter the material fracture resistance. It has been proposed in some early studies (Evans, 1990; Mandell and McGarry,
1974) that under proper conditions, poor interface bonding could increase the fracture energy. A growing crack tends to
meander along weakly bonded interfaces, leading to a tortuous crack trajectory. One way to address the role of interfacial
bonding strength is to keep the interfacial fracture energy constant at Fin¼78.5 J/m2 and maintain the same slope of the
initial linear portion of the cohesive relation (see Fig. 2) at 420 GPa. Under this condition, six different interfacial bonding
strength levels (Tin

max ¼ 6� 10�6, 6�10�4, 6�10�3, 6�10�2, 0.6, and 6 GPa, corresponding to Q1 ¼ Tin
max=T0

max ¼ 10�5,
10�3, 10�2, 10�1, 1 and 10, respectively) are considered. Since the fracture energy is the same, the critical separations Dtc

and Dnc are adjusted accordingly and the corresponding values are Dtc¼Dnc¼6800, 68, 6.8, 0.68, 0.068 and 0.0068 mm.
These cases represent very compliant to very stiff interfaces. It should be noted that, as a rule of thumb, the interface is
regarded as ‘‘well-bonded’’ if Tin

max 2 ½T
m
max,Tp

max� ¼ ½0:48, 0:7� GPa, where the K0, Tm
max and Tp

max (Fig. 2) are the cohesive
strengths of the interface, matrix and reinforcement, respectively, as listed in Table 1. Here for simplicity, we choose
T0

max¼0.6 GPa as the baseline case representing the well-bonded case. This baseline is the level used for calculations up to
this point. The variations are considered relative to this baseline case. In particular, the case with Q1 ¼ Tin

max=T0
max ¼ 10�5

essentially approximates a porous ceramic as though the particles do not exist.
The CFEM results in Fig. 19 and Fig. 20 show that the stiff interface (Q1¼10) leads to extensive particle cracking and a

14.7% decrease in KIC relative to the baseline case (Q1¼1). As the bonding strength decreases (or interfacial compliance
increases), more crack deflection into the matrix/reinforcement interfaces occurs, causing KIC to increase initially, but
ultimately decrease between Q1¼10�3 and 10�5. Particle cracking can be effectively avoided when the interfaces are quite
compliant (Q1o1). As Q1 decreases, the interface becomes more ductile as interface debonding gradually outweighs
matrix cracking and becomes the dominant fracture mode. It is noted that when Q1 ¼ Tin

max=T0
max ¼ 10�5, the interfacial

strength is negligibly small and the material essentially approximates porous ceramics as though the particles do not exist.
This scenario is consistent with what has been reported for porous ceramics whose fracture toughness values are lower
than two-phase or even single phase ceramics (Samborski and Sadowski, 2010). For Q1¼10�3 the separation distance
required for a complete decohesion of the cohesive elements along the interfaces can exceed the element size. This means
that the interface may not fully debond and the damage at the interface cannot be considered as real cracks. However, the
compliant interfaces serve as damage initiation sites. These damage sites contribute to energy dissipation and promote the
formation of cracks in the matrix and the reinforcement. For complete debonding to occur at the interfaces, much larger
microstructure samples than what is currently used and much longer load duration are needed. To simply put, the
resulting energy released and fracture toughness value would be higher than what is shown in Fig. 20. With the



Fig. 19. Crack trajectories for different compliance or strength levels of the reinforcement–matrix interface as measured by the strength ratio Q1.

Fig. 20. Effect of compliance of the reinforcement–matrix interface as measured by the strength ratio Q1 on KIC. The error bars indicate scatter of results

obtained from twenty random instantiations (samples) of each microstructure.
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understanding that the KIC value for Q1¼10�3 in Fig. 20 being a conservative underestimate of the actual value, the trend
of fracture toughness shown is valid and very illustrative. Specifically, to significantly improve the fracture resistance, the
interfacial bonding between the matrix and particles of ceramic composites should balance strength and compliance.
Excessively strong/stiff and overly weak or compliant interfaces are both detrimental. The data in Fig. 20 also show that
increases of up to 50% in KIC can be achieved by proper engineering of the interfacial bending strength/compliance, under
the condition that the overall interfacial fracture energy is kept constant.

To illustrate the effect of bonding strength alone on KIC, another set of calculations are carried out, with constant
separation Dtc¼Dnc¼0.068 mm so as to keep the interfaces brittle and relatively non-compliant. Under this condition, six
different interfacial bonding strength levels (Q2 ¼ Tin

max=T0
max ¼ 10�5, 10�3, 10�2, 10�1, 1 and 10, respectively,

T0
max¼0.6 GPa, the same as before) are considered. These parameters guarantee full interface debonding for all the



Fig. 21. Effect of bonding strength of the reinforcement–matrix interface as measured by the strength ratio Q2 on KIC. The error bars indicate scatter of

results obtained from twenty random instantiations (samples) of each microstructure.
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calculations under the conditions analyzed. Note that the cohesive energy changes for the six Q2 levels while the initial
slope of the cohesive relations remains constant at 420 GPa. As shown in Fig. 21, the trend of KIC is similar to that in Fig. 20.
However, the peak KIC value occurs around Q2E10�1. Although lower Q2 values promote crack deflection into the
interface, the improvement in fracture toughness KIC is very limited, as the fracture energy decreases dramatically when
Q2o1.

Noted that the KIC value at Q2¼10�5 is very close to the result shown in Fig. 20 when Q1 is at the same value. This is due
to the fact that interfacial bonding is essentially non-existent in both cases, effectively yielding a scenario in which the
material is equivalent to a porous ceramic. Similarly, when Q2¼10, even though the fracture energy of the interface is 10
times that of the baseline case, KIC is very similar to that in Fig. 20, due to the fact that interface debonding is completely
replaced by particle cracking.

Obviously, the most effective way to improve fracture toughness is to create compliant (ductile) interfaces without
sacrificing interfacial fracture energy. Fig. 20 shows that a proper balance must be maintained between interfacial bonding
strength (or compliance) and the promotion of crack deflection. Excessively strong (or stiff) interfacial bonding increases
penetration into particles and leads to catastrophic failure. Excessively weak (or compliant) bonding maximizes crack
deflection but diminishes the toughening effect of the reinforcement. Both extremes result in lower fracture toughness
values of the overall composite. A systematic quantification of the influences is important for materials design. A model to
this effect is developed in Li and Zhou (in press) based on the computational results reported here.
5. Summary

A cohesive finite element method (CFEM) based multi-scale framework for analyzing the effects of microstructural
heterogeneity, phase morphology, phase size, constituent behavior, and interfacial bonding strength on the fracture
toughness of materials is developed. The computational framework allows the fracture initiation toughness and
propagation toughness to be predicted as functions of microstructural attributes and constituent behavior. The method
uses the J-integral and the linear elastic relation between J and K. The evaluation applies to steady-state crack propagation
for which the driving force for fracture and fracture resistance of the material are in balance.

Calculations carried out concern Al2O3/TiB2 two-phase ceramic composites and focus on the fundamental fracture
mechanisms during crack initiation and propagation. Results of CFEM calculations show that both microstructure and
constituent properties can significantly influence fracture behavior and combine to determine the overall fracture
toughness through the activation of different fracture mechanisms. Interface debonding is the most beneficial fracture
mechanism and is primarily promoted by small reinforcement size, rounded particle shapes and appropriately bonded and
compliant reinforcement–matrix interfaces. In contrast, particle cracking, which triggers catastrophic material failure,
usually occurs in microstructure with large reinforcement particles, lower particle roundness and over-bonded/stiff
interfaces. Important constituent parameters are the fracture toughness of the matrix phase and the toughness of the
interface between the matrix and the reinforcement phases. In contrast, increasing the toughness of the reinforcement
phase beyond a certain level has only diminishing influence. CFEM calculations suggest a properly balanced level of
interfacial bonding can maximize the fracture toughness of the materials if the interfacial fracture energy is kept constant
as Fin. In the setting of this paper, Q1 ¼ Tin

max=T0
max values in the range of 10�3 to 10�2 offer an appropriate balance to

maximize the propagation toughness of the Al2O3/TiB2 material system.
The forgoing analyses point out that the fundamental avenue for toughening is the activation of different fracture

mechanisms through the interplays between microstructure attributes which are stochastic on nature. To take advantage
of the mechanisms, which can only be influenced in a statistical sense through microstructure design, it is important to
quantify the relations between statistical measures for microstructure characteristics and statistical measures for the
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fracture mechanisms. Such quantification can allow an analytical relation to be established between fracture toughness
and microstructure. This will be the topic of Li and Zhou (in press).
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