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The objective of this study is to develop a micromechanical approach for determining the
fracture toughness. A phase-field model for grain growth is employed to generate micro-
structures with varying attributes and the cohesive finite element method is employed
to quantify the interaction between a propagating crack and microstructures of an AZ31
Mg alloy. Simulations show that fracture toughness increases as the average grain size
decreases and that the local crack tip environment significantly affects the fracture behav-
ior. Dramatically different dependences of fracture toughness on overall strain rate are
seen when two different types of cohesive laws are employed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Metallic alloys are microscopically-heterogeneous materials widely used in engineering. Among different metallic alloys,
Mg alloys have been of recent interest due to increasing demand for light-weight materials in industry. The AZ31 Mg alloy
has attractive mechanical properties, including high specific strength, good tensile properties [1], high machinability, and
fatigue resistance [2]. Since AZ31 is not as tough as widely-used Al alloys, much effort has been devoted to investigating
and improving its fracture resistance. Somekawa and Mukai [3,4] found that AZ31 Mg alloy samples with a pre-crack normal
to the basal plane have a higher fracture toughness than those with a pre-crack parallel to the basal plane. Somekawa and
Mukai [5] improved the fracture toughness of the AZ31 Mg alloy by refining grain structure in an equal-channel-angular-
extrusion (ECAE) process.

Designing microstructures for improving fracture resistance requires a detailed understanding of how an advancing crack
interacts with the microstructures at multiple length scales [6]. Microscale failure can be analyzed by explicit micromechan-
ical simulations. Through the consideration of representative samples of actual microstructures, effects of various fracture
mechanisms can be delineated. The required features of the simulation framework should include (1) explicit accounting
of real, arbitrary material microstructures, and (2) explicit modeling of fracture in a non-constrained manner so that arbi-
trary crack paths or microcrack patterns are admitted.

Among the multiple approaches for investigating fracture, the cohesive finite element method (CFEM) and the eXtended
finite element method (XFEM) have shown their effectiveness. Song et al. [7] studied their performances for analyzing
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Nomenclature

a half length of central crack
B thickness of CCT specimen
C strain-rate sensitivity parameter
D damage parameter for cohesive separation
D total rate of deformation
De elastic part of the rate of deformation
Dp plastic part of the rate of deformation
f0 local free energy density in phase-field simulation
F total free energy of the system in phase-field simulation
GF fracture energy
K stress intensity factor
KIC fracture toughness
L tensor of isotropic elastic moduli
Mi grain boundary mobilities
P load at the upper or lower boundary of the CCT specimen
T effective traction
Tm cohesive strength
Tn cohesive traction in the normal direction
Tt cohesive traction in the tangential direction
w effective separation
wc critical separation beyond which the traction becomes zero for the homogenized alloy, the grain interior, the

grain boundary-affected zone, and the interface
wm characteristic separation at which T reaches Tm

wn normal separation across the cohesive surfaces
wt tangential separation across the cohesive surfaces
W half width of the CCT specimen
a, b, c phenomenological constants in local free energy density function f0

d opening displacement of the pre-crack tip
dcr critical crack tip opening displacement
Dt time step size in phase-field simulation
Dx grid spacing in phase-field simulation
_e strain rate
_e0 reference strain rate
�ep equivalent plastic strain
_�ep effective plastic strain rate
g1,g2, . . . ,gQ a set of order parameters in phase-field simulation
ji gradient energy coefficients in phase-field simulation
r0 yield stress under quasi-static conditions
�r von Mises stress
rð _e0Þ reference stress–strain curve at the reference strain rate
ŝ Jaumann rate of Kirchhoff stress
s0 devitoric stress
APT active parameter tracking
CCT center-cracked-tension
CFEM cohesive finite element method
CTOD crack tip opening displacement
ECAE equal-channel-angular-extrusion
FPZ fracture process zone
GBAZ grain boundary-affected zone
GI grain interior
HA homogenized alloy
XFEM eXtended finite element method
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dynamic crack propagation in brittle materials. They found that the XFEM and the CFEM showed similar crack speeds and
crack paths. In contrast, the element deletion method performed very poorly and was unable to predict crack branching.
They also pointed out that current difficulty with the XFEM lied in the modeling of spontaneous multiple crack initiation,
branching, and coalescence. Our research in this study concentrates on both the propagation of a pre-crack and the nucle-
ation and the propagation of multiple microcracks around the pre-crack tip within the fracture process zone (FPZ). Therefore,
the CFEM is an appealing approach for our research.
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The CFEM has been developed since the 1980s [8,9]. It incorporates the concept of cohesive surface into the finite element
model, allowing fracture processes to be modeled explicitly. A large amount of work using the CFEM has been done to inves-
tigate important issues in fracture mechanics such as terminal crack speed and crack branching [10], interfacial fracture [11],
and material fragmentation [12]. These investigations have led to a better understanding of the fracture processes at the
microscopic level.

The CFEM is particularly advantageous in characterizing arbitrary nature of the dynamic fracture processes [8–10,13–16].
In a regular finite element scheme, bulk elements are perfectly bonded. Therefore, separation is possible only if additional
criteria are used and the finite element connectivity is revised during calculations, as in the element deletion method. On
the other hand, in the CFEM, the element boundaries are kinematically separate. To simulate complex crack patterns asso-
ciated with crack deflection, branching, and microcracking, cohesive elements can be specified along all finite element
boundaries to serve as potential crack paths [10,14,15]. The CFEM provides a useful tool for exploring the quantitative fea-
tures of the fracture processes through explicit simulations. Since the failure has been incorporated into a cohesive law, the
CFEM does not require any crack initiation and propagation criterion in the numerical implementation. The cohesive formu-
lation allows fracture to evolve as a natural outcome of the combined effects of bulk constituent response, interfacial behav-
ior, and applied loading. However, none of the aforementioned work considered microstructures of heterogeneous materials.

There have been efforts to incorporate microstructures into the simulations by CFEM. Espinosa and Zavattieri [17,18] em-
ployed the CFEM to analyze the response of alumina microstructures under quasi-static and dynamic loading and assessed
the roles of grain boundary strength and toughness, their stochasticity, and separation rate on damage initiation and evolu-
tion. Zavattieri and Espinosa [19] presented a grain-level micromechanical analysis of alumina microstructures subject to
dynamic compression-shear loading. In these simulations, the cohesive elements were inserted only along grain boundaries
to phenomelogically capture intergranular fracture through breaking of atomic bonds or grain boundary sliding. One obvious
shortcoming is that transgranular fracture in the microstructures cannot be captured.

Zhai and Zhou [20] and Zhai et al. [21] used the exponential cohesive law [10] and a bilinear cohesive law in the CFEM to
explicitly account for arbitrary microstructures and fracture patterns in Al2O3/TiB2 ceramic composites. They demonstrated
the effects of microstructures, material inhomogeneities, and interfacial strength on dynamic fracture characteristics. In
these simulations, to simulate complex crack patterns associated with crack deflection, branching, and microcracking, the
cohesive elements were specified along all bulk finite element boundaries to serve as potential crack paths. Tomar et al.
[22] studied lower and upper bounds for CFEM models with intrinsically embedded cohesive surfaces and cohesive laws
with finite initial stiffness. They found that the element size must be small enough to accurately resolve the stress distribu-
tion inside the cohesive zones at crack tips. On the other hand, the cohesive surface contribution to stiffness reduction must
be small, such that wave speed in the solid is not affected due to the presence of cohesive surfaces. This imposes a lower
bound on the size of the elements.

In this paper, we develop a micromechanical approach for determining the fracture toughness of the AZ31 Mg alloy at the
microscopic level. To assist the study on the effect of the microstructures on the fracture toughness, we employ a multi-order
parameter phase-field model with an active parameter tracking (APT) algorithm to generate microstructures with system-
atically varying attributes. To capture both intergranular and transgranular fracture, we follow the approach of Zhai and
Zhou [20] and Zhai et al. [21] by specifying the cohesive elements along all bulk finite element boundaries and using very
fine meshes to resolve arbitrary crack paths and microcrack patterns. The design of mesh and specification of cohesive
law parameters follow the convergence criterion of Tomar et al. [22]. The analysis will focus on the FPZ evolution and its
interaction with different microstructure heterogeneities. The effects of microstructural variance and overall strain rate
on the fracture toughness of the AZ31 Mg alloy will be characterized.
2. Simulation methodology – cohesive finite element method

The CFEM is well suited for the simulation of the separation processes in fracture. Spatially-distributed cohesive elements
within the FPZ concern all material entities. Specifically, the CFEM model consists of conventional bulk elements and cohe-
sive elements along all bulk element boundaries. Constitutive relations must be specified for all the bulk elements, as in the
regular FEM. In addition, cohesive laws which relate tractions and interfacial separations are needed to fully characterize the
behavior of cohesive elements.

Here, an elasto-plastic, isotropic constitutive relation is assumed for the bulk constituents, namely, the grain interiors
(GIs), the grain boundary-affected zones (GBAZs), and homogenized alloy (HA) zones (details in Section 3). An additive
decomposition of the rate of deformation is employed, i.e.,
D ¼ De þ Dp; ð1Þ
where D is the total rate of deformation, De is the elastic part of the rate of deformation, and Dp is the plastic part of the rate
of deformation [23]. Small elastic strains and elastic isotropy are presumed so that
De ¼ L�1 : ŝ; ð2Þ
where L is the tensor of isotropic elastic moduli and ŝ is the Jaumann rate of Kirchhoff stress. Plastic flow follows the
J2-plasticity rule, i.e.,
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Dp ¼ 3 _�ep

2�r
s0; ð3Þ
where �r is the von Mises stress, s0 is the devitoric stress, and _�ep is the effective plastic strain rate defined as
_�ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

Dp : Dp

r
: ð4Þ
The Johnson–Cook model [24] is employed to describe the constitutive behavior of the bulk elements, i.e.,
rð _eÞ ¼ rð _e0Þ 1þ Cln
_e
_e0

� �
; ð5Þ
where _e0, a reference strain rate, is taken as 10-3 s-1; rð _e0Þ, a reference stress–strain curve at the reference strain rate, can be
found in Lou et al. [25]; and C, a strain-rate sensitivity constant, is taken as 0.02. All material constitutive parameters in rð _e0Þ
are chosen at the room temperature.

The cohesive law specifies the relationship between traction and separation across the cohesive surfaces. Many cohesive
laws have been proposed for different conditions. Here, the bilinear cohesive law for mixed-mode fracture is employed [21].
The fracture energy GF is the work required to create and fully separate a unit surface area pair and is given by
GF ¼
Z wc

0
TðwÞdw; ð6Þ
where T is the effective traction, w is the effective separation, and wc is the critical separation beyond which the traction
becomes zero and the cohesive element is regarded as having failed completely. The effective traction T and the effective
separation w are defined as
T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

n þ T2
t

q
and w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

n þw2
t

q
; ð7Þ
respectively. In the above relations, Tn and Tt are the cohesive tractions in the normal and tangential directions, respectively;
and wn and wt are the normal and tangential separation across the cohesive surfaces, respectively. The normal and tangential
tractions Tn and Tt across the cohesive surfaces are given by, respectively,
Tn ¼ T
wn

w
and Tt ¼ T

wt

w
: ð8Þ
For the bilinear cohesive law,
T ¼
Tm

w
wm

for 0 6 w 6 wm; and

Tm
wc�w

wc�wm
for wm < w 6 wc:

(
ð9Þ
In the above relations, Tm is the cohesive traction at which damage initiates and wm is the characteristic separation at which
the effective cohesive traction T reaches the cohesive strength Tm.

Fig. 1 gives a schematic illustration of the relation between T and w. Apparently, three cohesive parameters, e.g., the cohe-
sive strength Tm, the characteristic separation wm, and the critical separation wc, are needed to characterize the bilinear cohe-
sive relation. The deformation of a cohesive element consists of two stages. In the initial stage (O-A), the separation is elastic
and the cohesive energy stored during this stage is recoverable. In the second stage (A-B), the separation leads to material
degradation and linear softening associated with the initiation and evolution of damage. The cohesive energy consumed for
the crack surface formation during the second stage is partially irrecoverable. The characteristic separation wm reflects the
proportion of the first stage in the whole process. From Fig. 1, it can be found that wm influences the slope of O-A, i.e., the
Fig. 1. Bilinear cohesive law.
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stiffness of the cohesive element. Lower wm values (under contact values of Tm) indicate stiffer cohesive response. A damage
parameter for cohesive separation, D, can be defined as [26]
D ¼ wcðw�wmÞ
wðwc �wmÞ

: ð10Þ
Obviously, D = 0 initially. After total failure occurs, D = 1. D can be employed as a measure for damage in crack surfaces. The
CFEM model is implemented in ABAQUS [26].

3. Determination of fracture toughness

3.1. Phase-field model for grain growth

Controlling microstructure evolution is crucial to optimization of materials properties through processing. Therefore,
there have been much computational efforts in materials science to model microstructural transformations under realistic
conditions. Multiple approaches for simulating grain growth have been developed, including Monte Carlo models [27], ver-
tex tracking [28], front tracking [29], Laguerre tessellation [30], cellular automata [31], and phase-field approaches [32–36].
For coarsening of a polycrystalline solid with uniform grain-boundary mobilities and energies, all of these approaches reach
similar conclusions on the kinetic and topological aspects of two-dimensional grain growth [37]. The main advantage of the
phase-field grain growth approach over the vertex tracking, the front tracking, Laguerre tessellation, and the cellular auto-
mata methods is that it has no need to track the positions of interfaces. The advantage of the phase-field grain growth ap-
proach over the Monte Carlo approach is the accuracy of the grain boundary curvature representation. Therefore, the phase-
field grain growth approach is an appealing approach for generating microstructures with systematically varying attributes.

Chen and Yang [32] proposed a multi-order parameter phase-field grain growth model. In the model, a grain structure is
described by a set of order parameters (g1,g2, . . . ,gQ), with each order parameter corresponding to a different grain orienta-
tion. The following time-dependent equations for each order parameter can be solved [32,37]
@gi

@t
¼ �Mi

dF
dgi

� �
; i ¼ 1;2; . . . ;Q ; ð11Þ
where Mi denote grain boundary mobilities and F is the total free energy of the system. In the simulations reported here, Mi

have identical and constant values. The free energy is a function of the order parameters and their gradients [32,37], i.e.,
F ¼
Z

V
f0ðg1;g2; . . . ;gQ Þ þ

1
2

XQ

i¼1

jiðrgiÞ
2

" #
dV ; ð12Þ
where f0 represents local free energy density, and ji are the gradient energy coefficients. For a system containing a finite
number of grains, with each grain having one of Q possible orientations, function f0 can be chosen to have degenerate minima
at (g1,g2, . . . ,gQ) = (1,0, . . . ,0), (0,1, . . . ,0), . . . , (0,0, . . . ,1). A simple function f0 satisfying this requirement is given as [32,37]
f0ðg1;g2; . . . ;gQ Þ ¼
XQ

i¼1

�1
2
ag2

i þ
1
4

bg4
i

� �
þ c
XQ

i¼1

XQ

j–i

g2
i g

2
j ; ð13Þ
where a, b, and c are phenomenological constants. For a = b > 0 and c > b/2, f0 has 2Q minima at gj = ±1 and gi = 0 for all i – j.
Substitution of Eqs. (12) and (13) into Eq. (11) yields the equation of motion [32,37]
@gi

@t
¼ �Mi �agi þ bg3

i þ 2cgi

XQ

j–i

g2
j � jir2gi

 !
: ð14Þ
Owing to the implementation of the APT algorithm to improve computational efficiency and to avoid early-stage unphys-
ical grain coalscence [38], Eq. (14) has to be solved only at and near the grain boundaries using a forward-Euler integration
scheme [32,37]
giðt þ DtÞ ¼ giðtÞ þ
dgi

dt
Dt ð15Þ
Since the APT algorithm is implemented in the model of Chen and Yang [32], an order parameter is associated with a un-
ique grain orientation in the grain structure. This algorithm avoids unphysical grain coalescences seen in previous studies
[32,37], where one order parameter is associated with multiple grains. Another advantage of the APT algorithm [38] is com-
putation efficiency. The number of active order parameters in a two-dimensional grain growth simulation is typically 20–30.
Therefore, only 1–30 Ginzburg–Landau equations at each point instead of Q (2000 in the calculations carried out here) equa-
tions need to be solved.

The two-dimensional calculations carried out involve 500 � 500 grid points and a grid spacing of Dx = 2.0 with periodic
boundary conditions in all directions. The initial structure has 2000 circular grains of radius 2.0 Dx. No overlap between the
initial grains is permitted. The coefficients in Eq. (13) are ai = bi = ci = 1, ji = 2, and Mi = 1 for all i. The grain boundary energy
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and mobility are isotropic. The time step size Dt in Eq. (15) is taken as 0.1. Grain structures for six different time steps and
with a size of 0.17 � 0.17 mm are shown in Fig. 2a–f and their central regions with the dimensions of 0.08 � 0.08 mm are
shown in Fig. 2h–l. The total number of grains decreases from 1160 to 113 as the average grain size increases from 9.4 to
32.2 lm. Green zones represent GIs, blue zones represent GBAZs, and red lines represent interfaces between the GIs and
the GBAZs.

3.2. Computational framework for determination of fracture toughness

One issue in evaluating fracture toughness in heterogeneous materials resides in the fact that both large and small scale
features must be considered concurrently. The reason is that fracture toughness is a macroscopic quantity while fracture
mechanisms typically are operative at the microscale [39]. To satisfy the requirements for fracture toughness testing set
forth in ASTM standard E399 [40], a center-cracked-tension (CCT) specimen with a width of 320 mm, a height of
160 mm, and a central pre-crack length of 160 mm, is employed in this study. The configuration used in the analysis is shown
in Fig. 3. The microstructure region with a size of 0.17 � 0.17 mm is placed in front of the pre-crack tip. A close-up view of its
central region with a size of 0.08 � 0.08 mm is also shown in Fig. 3. Unless otherwise stated, the pre-crack tip extends 20 lm
into the microstructure. The fine meshes consisting of cross-triangular elements (1 lm in size) are used to resolve the micro-
structure morphology of the material and fracture development. Note that the bulk elements in the microstructure have ex-
actly the same size in this study so that the embedded cohesive elements have exactly the same number density for the
different microstructures to exclude the dependence of simulation results on the number density of the cohesive elements
[41]. Outside the microstructure region, the material is taken as an isotropic HA with the macroscopic properties of the
material analyzed. The number of bulk elements (3-node triangular continuum plain strain element, i.e., CPE3 in ABAQUS)
Fig. 2. Microstructures with each size 0.17 � 0.17 mm and their close-up views with each size 0.08 � 0.08 mm generated by phase-field grain growth
simulations: (a) average grain size: 9.37 lm, (b) average grain size: 11.32 lm, (c) average grain size: 12.86 lm, (d) average grain size: 16.38 lm, (e) average
grain size: 22.85 lm, (f) average grain size: 32.17 lm, (g) close-up view of (a), (h) close-up view of (b), (i) close-up view of (c), (j) close-up view of (d), (k)
close-up view of (e), (l) close-up view of (f).



Fig. 3. Configuration of fracture analyses.
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is over 305,000 and the number of cohesive elements (2-dimensional 4-node cohesive elements, i.e., COH2D4 in ABAQUS) is
over 456,000. As required by ASTM E399 [40], plain strain condition is used in the simulations.

In Espinosa and Zavattieri [17,18], the grain boundaries are discrete lines with zero thickness and cohesive elements are
inserted only along the grain boundaries. Their results demonstrated that stress concentration is only present in the case
with grain anisotropy and that the presence of the cohesive elements does not affect the uniform stress distribution observed
in the isotropic case. In this paper, each phase (GI, GBAZ, and HA in Fig. 3) is taken to be isotropic and non-uniform stress
distributions can occur due to the introduction of the GBAZs with non-zero thickness and, therefore, finite volume.

Although the GIs and the GBAZs are intrinsically anisotropic due to the crystalline structure and triple junctions, in the
‘‘composite’’ model for the crystalline grain structure, to treat each phase as an isotropic constituent has proven to be a ra-
tional approximation to describe the overall mechanical behaviors of the grain structure [42]. Furthermore, while some the-
oretical models can be anisotropic, in order to simplify the subsequent computation, the phases can be considered isotropic
to capture the main mechanical issues [43,44].

The grain interior (GI) has a higher yield stress and lower fracture energy than the GBAZ. Table 1 lists the properties of the
HA, GI and GBAZ. Specifically, compared with the HA, the GI’s yield stress is 10% higher and its cohesive strength is 10% low-
er, while the GBAZ’s yield stress is 20% lower and its cohesive strength is 20% higher. The cohesive strength of the interface
between the GI and the GBAZ is 10% higher than that of the HA. The critical separations for the GI, the GBAZ, the interface,
and the HA are taken to be the same and equal to wc, as listed in Table 1.

Among the cohesive strength, the critical separation, and the fracture energy, only two out of the three are independent.
In this paper, the fracture energy GF is taken as, unless otherwise stated, 7500 J m�2 (corresponding to a fracture toughness of
19:6 MPa

ffiffiffiffiffi
m
p

). As illustrated in Fig. 4, in the bilinear cohesive law, as the cohesive strength Tm increases from 500 to 600 MPa,
the critical separation wc correspondingly decreases from 30 to 25 lm, which is over 25 times the element size in the



Table 1
Constitutive parameters for bulk materials and cohesive surfaces.

Compound Density
(kg m�3)

Yield
stress

Elastic modulus
(GPa)

Poisson’s
ratio

Cohesive
strength (GPa)

Critical
separation (lm)

Fracture energy
(J m�2)

Grain boundary-affected
zone (GBAZ)

1738 0.8r0 45 0.35 1.2Tm wc 1.2GF (600 Tmwc)

Grain interior (GI) 1738 1.1r0 45 0.35 0.9Tm wc 0.9GF (450Tmwc)
Interface � � � � � � � � � � � � 1.1Tm wc 1.1GF (550Tmwc)
Homogenized alloy (HA) I738 r0 45 0.35 Tm wc GF (500Tmwc)

Fig. 4. Bilinear cohesive relations used in the simulations.
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microstructure region. This leads to large distortion and crack blunting around the crack tip. In all simulations, the charac-
teristic separation wm is taken as 0.01 lm, which is much smaller than the critical separation wc, to restrict artificial soften-
ing of global stiffness and mesh dependence due to the insertion of the cohesive elements [22]. As a result, traction increases
rapidly before Tm is reached and then decreases slowly, as shown in Fig. 4.

Symmetric velocity boundary conditions are imposed at the bottom and top edges of the specimen in Fig. 3. During the
simulation, the reaction force at each boundary node at the bottom or top edges is used to obtain P, the load at the upper or
lower boundary of the CCT specimen. For the CCT specimen configuration considered, the stress intensity factor can be cal-
culated as [40,45]
K ¼ P

B
ffiffiffiffiffiffi
W
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa
4W

sec
pa
2W

� �r
1� 0:025

a
W

� �2
þ 0:06

a
W

� �4
� �

; ð16Þ
where W, half width of the CCT specimen, is 160 mm; a, half length of the central-crack, is 80 mm; B, specimen thickness, is
1.0 m since plain strain conditions are required to prevail.

4. Trends in fracture toughness of the AZ31 Mg alloy

4.1. CFEM results and comparison with K-field theory

The CFEM does not require any crack initiation or propagation criterion in the numerical implementation. For the purpose
of consistent identification of crack initiation, an empirical criterion is specified to define the critical point of fracture initi-
ation and the corresponding stress intensity factor which is taken as the fracture toughness of the material.

Unless otherwise stated, the overall strain rate is 0.0125 s�1 so that the specimen is in a quasi-static loading state. In the
first example, for the HA, the cohesive strength Tm is 570 MPa (�3.0 times its yield stress r0 (187.5 MPa)). The constitutive
parameters for the other phases can be obtained from the relationships in Table 1. Since the overall fracture toughness is
19:6 MPa

ffiffiffiffiffi
m
p

, the relation between the stress intensity factor and the opening displacement d of the pre-crack tip can be
used to determine the critical crack tip opening displacement (CTOD) dcr as
dcr ¼ dcr0 ¼ 10 lm: ð17Þ



Fig. 5. Equivalent plastic strain in the microstructure at fracture initiation in deformed configuration: (a) obtained from CFEM simulation, (b) the first close-
up view of (a) (with mesh), (c) the second close-up view of (a) (with mesh).

Fig. 6. Distribution of �r around the pre-crack tip: (a) obtained from CFEM simulation and (b) obtained from K-field theory at K ¼ 18:4 MPa
ffiffiffiffiffi
m
p

.

X. Guo et al. / Engineering Fracture Mechanics 96 (2012) 401–415 409
This condition is used to define crack initiation and identify the fracture toughness. Eq. (17) is used in the calculations and
updated accordingly, as shown in subsequent context.



Fig. 7. Dissipation due to damage and plasticity as functions of overall strain at different levels of cohesive strength: (a) dissipation due to damage and (b)
dissipation due to plasticity.

Fig. 8. Effect of cohesive strength on the fracture toughness of the Mg alloy.
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The crack opening displacement of dcr = 10 lm is used for other microstructures as well. For the HA, the cohesive strength
Tm is taken as 550 MPa (�2.9r0). The fracture toughness is determined to be 18:4 MPa

ffiffiffiffiffi
m
p

. Fig. 5a shows the distribution of
the equivalent plastic strain �ep in the microstructure region when fracture initiation occurs (condition in Eq. (17) is met). It
can be seen that the equivalent plastic strain in the GBAZs is clearly higher than that in the nearby GIs. This observation is
consistent with the understanding of failure of metals. Fig. 5b and c with the bulk and cohesive elements are close-up views
of Fig. 5a. Both of them clearly show the smaller �ep along the main crack due to unloading. Fig. 5b illustrates the heavily-
deformed debris bridging two faces of the main crack and a microcrack nucleated nearby, while Fig. 5c illustrates the nucle-
ation of three microcracks in front of the main crack tip. All of the four nucleated microcracks in Fig. 5b and c intersect the
GBs. Fig. 6a shows the distribution of the von Mises stress �r in the pre-crack tip region when fracture initiation occurs. For
comparison, Fig. 6b shows the K-field stress distribution at K ¼ 18:4 MPa
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. The von Mises yield criterion is employed to
estimate the elastic–plastic boundary and thus the plastic zone size. The plastic zone size (yellow1 region in Fig. 6a) obtained
by CFEM calculations (plane strain condition) is �50% that predicted by the K-field theory (plane strain condition). Our results
are in good agreement with finite element analysis [46]. The agreement is better in the Y direction.

4.2. Dependence of fracture toughness on cohesive strength

The fracture behavior predicted by the CFEM model depends heavily on the cohesive strength Tm and the fracture energy
GF specified through the cohesive law. The effects are analyzed in detail here. Effect of the cohesive strength on the overall
fracture toughness is studied first. Six levels of cohesive strength Tm, i.e., 300 (�1.6r0), 400, 500, 550, 600, and 700 MPa
1 For interpretation of color in Figs. 2 and 6, the reader is referred to the web version of this article.



Fig. 9. Effect of HA fracture energy on overall fracture toughness at two levels of crack-tip opening displacement: (a) when Eq. (17) is used and (b) when Eq.
(18) is used.

Fig. 10. Volume fraction of the GBAZs and distribution of relative grain size for three of the microstructures in Fig. 2: (a) volume fraction of the GBAZs and
(b) probability distribution of relative grain size.

Fig. 11. Effect of the average grain size on the fracture toughness of the Mg alloy.
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Fig. 12. Effect of the local environment around the pre-crack tip on the fracture toughness (in deformed configuration): (a) the pre-crack tip extends 20 lm
into the microstructure, (b) the pre-crack tip extends 40 lm into the microstructure, (c) the pre-crack tip extends 80 lm into the microstructure.
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(�3.7r0), are considered. The results show that the total external work and strain energy do not change with the cohesive
strength essentially. This can be explained by the fact that both of these quantities are associated with the bulk deformation
process, i.e., they are mostly related to bulk elasticity and plasticity and are insensitive to the fracture process. On the other
hand, the dissipations due to damage and plasticity are quite sensitive to the cohesive strength, as shown in Fig. 7. The frac-
ture toughness values of the AZ31 Mg alloy with the different cohesive strength levels are shown in Fig. 8. Experiments show
that the fracture toughness of the AZ31 Mg alloy varies from 17:6 to 20:7 MPa
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[3,4], as illustrated as the colored band in



Fig. 13. Effect of cohesive law on fracture toughness: (a) rate-independent cohesive strength and (b) rate-dependent cohesive strength.
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Fig. 8. Obviously, cohesive strength values between 505 MPa and 615 MPa provide the best fit to the experimental results.
These values are 2.7–3.3r0 of the AZ31 alloy as reported in the literature.

4.3. Dependence of fracture toughness on fracture energy

Next, effect of the fracture energy of the HA on the overall fracture toughness is studied. The cohesive strength Tm is taken
to be 600 MPa and four levels of the HA fracture energy GF (6000, 6500, 7000, and 7500 J m�2) are considered. In Fig. 9a, the
critical CTOD values in Eq. (17) are used. In Fig. 9b, the critical CTOD is taken to be proportional to the fracture energy of the
HA, i.e.,
dcr ¼
GF

GF0
dcr0 ¼

GF

7500 J m�2 10 lm: ð18Þ
When Eq. (18) is used, the fracture toughness increases with the fracture energy (as shown in Fig. 9b). This result is consis-
tent with the generally accepted trends. It has been shown that the critical CTOD is proportional to the fracture energy (see,
e.g., [45]).

4.4. Dependence of fracture toughness on grain size

The dependence of fracture toughness on grain size is an important issue for metallic alloys as it provides a mechanism
for toughening through microstructure modification. The microstructures in Fig. 2 are used in the analysis in this regard.
Fig. 10a illustrates that the volume fraction of the GBAZ decreases from 26% to 15% as the average grain size increases from
9.4 to 32.2 lm in Fig. 2. To quantify the variations in grain size, we define the relative size of each grain as the ratio of its size
to the average grain size in the microstructure. Fig. 10b illustrates the distributions of the relative grain size for three of the
microstructures in Fig. 2. The distributions are essentially the same, indicating that the only difference between the micro-
structures is the average grain size and the relative size distributions are consistent with each other.

In the simulations, the cohesive strength Tm for the HA is taken as 550 MPa (�2.9r0). Since the primary interest here is on
the effect of the geometric aspect of the microstructures, both the bulk and cohesive properties of the phases are kept con-
stant. Fig. 11 shows that the overall fracture toughness decreases from 18:6 to 17:9 MPa
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as the average grain size in-
crease from 9.4 to 32.2 lm. Somekawa and Mukai [5] improved fracture toughness of the AZ31 Mg alloy by refining the
grain structure through an ECAE process. The simulation results here agree reasonably well with the trend in the experi-
ments of Somekawa and Mukai [5].

4.5. Dependence of fracture toughness on local environment at the pre-crack tip

Effect of the local environment at the pre-crack tip on the overall fracture toughness is also investigated. A microstructure
with an average grain size of 14.9 lm is chosen and the associated fraction of the GBAZ is 17.6%. The cohesive strength Tm is
taken to be 550 MPa. The pre-crack tip extends 20, 40, and 80 lm into the same microstructure in Fig. 12a–c to provide a
random sampling of the crack tip location. Note that the differences in the crack lengths here are less than 1/1000 of the
overall crack length (Fig. 3), therefore, have negligible effect on the evaluation of fracture toughness in the analysis. Upon
fracture initiation, the distribution of the equivalent plastic strain and the fracture patterns are dramatically different be-
tween the cases studied. Furthermore, the overall fracture toughness is 19:38 MPa
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for the 20 lm-extension,
18:85 MPa
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for the 40 lm-extension, and 19:17 MPa
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for the 80 lm-extension. This effect is clearly appreciable. The
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relative variation in the fracture toughness is approximately 2.8%, giving an estimate for the degree of variation in KIC esti-
mate for each microstructural setting.

4.6. Dependence of fracture toughness on overall strain rate

Finally, the effect of the overall strain rate on the fracture toughness is studied. The dependence of the stress–strain rela-
tion on strain rate is characterized by the Johnson–Cook model (Eq. (5)). A constant cohesive strength Tm = 570 MPa (�3.0r0)
is used. The fracture toughness decreases as the overall strain rate increases, as shown in Fig. 13a. To further analyze the
issue, a rate-dependent cohesive law is used. Specifically, the cohesive strength is take to be
Tm ¼ Tmð _eÞ ¼ 3:0r0ð _eÞ ¼ 3:0r0ð _e0Þ 1þ 0:02 ln
_e
_e0

� �
: ð19Þ
The results are shown in Fig. 13b. Under this condition, the fracture toughness is found to increase with strain rate. The qual-
itatively different trends in Fig. 13 are in contrast to each other. Validation by experiments or molecular dynamic simulations
should provide more insight in this regard.
5. Conclusions

A micromechanical approach based on the CFEM for quantifying the fracture toughness of the AZ31 Mg alloy as functions
of microstructure is developed. To study the effect of microstructure on the fracture toughness of this material, a multi-order
parameter phase-field grain growth model with the APT algorithm is employed to generate microstructures with systemat-
ically varying attributes. In the analysis, each phase (the GI, the GBAZ, and the HA) is taken as an isotropic constituent. The
evolution of the FPZ and its interaction with the microstructure are investigated. The cohesive strength for the AZ31 Mg alloy
is calibrated by comparing the fracture toughness results from CFEM simulations with those from experimental studies re-
ported in the literature. Two different trends of the overall fracture toughness as a function of the fracture energy of the HA
have been identified, depending on the nature of the critical CTOD. Simulations show that the overall fracture toughness in-
creases as the average grain size decreases. The fracture toughness also depends on the nature of the cohesive law used.
While strain rate hardening of the bulk constituents causes the fracture toughness to be lower at higher strain rates, strain
rate hardening of the cohesive surfaces cause the fracture toughness to increase as strain rate increases. The findings that
both the nature of the critical CTOD (its dependence on the fracture energy) and that of the cohesive law (its dependence
on strain rate) dramatically alter and even directly reverse the trend of the fracture toughness suggest a need to carefully
choose the critical CTOD and the cohesive law through experiments and computational analyses. The results here provide
insights that can be used to tailor the strengthening and toughening processes (the ECAE, heat treatment, etc.) of the
AZ31 Mg alloy. The framework for establishing fracture toughness can also be applied to other metallic alloys such as Al al-
loys and steels.
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