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A classical molecular-dynamics potential for analyzing mechanical deformation in the �-Fe2O3+fcc-Al
material system is developed. The potential includes an embedded atom method cluster functional, a Morse-
type pair function, and a second-order electrostatic interaction function. It is fitted to the lattice constants,
elastic constants, and cohesive energies of fcc Al, bcc Fe, �-Fe2O3, �-Al2O3, and B2-FeAl, accounting for the
fact that mixtures of Al and Fe2O3 are chemically reactive and deformation may cause the formation of these
components as reaction products or intermediates. To obtain close approximations of the behavior of mixtures
with any combination of the atomic elements, the potential is formulated and fitted such that the Al-Al, Fe-Fe,
Al-Fe, O-O, Fe-O, and Al-O interactions are accounted for in an explicit and interdependent manner. In
addition to being fitted to the lattice constants, elastic constants, and cohesive energies, the potential gives
predictions of the surface and stacking fault energies for the crystalline components that compare well with the
predictions of established potentials in the literature for the corresponding crystalline components. The poten-
tial is applied to analyze quasistatic tensile deformation in nanocrystalline Al, in nanocrystalline Fe2O3, and in
nanocrystalline Al+Fe2O3 composites. Application of the potential to nanocrystalline Al reveals the features of
mechanical deformation, such as the formation of unit dislocations, flow strength approaching ideal shear
strength, and the Hall-Petch relationships, that are in close agreement with experiments and with the predic-
tions of established potentials for Al in the literature. Analyses of deformation in nanocrystalline Fe2O3 and in
nanocrystalline Al+Fe2O3 composites point to the possibility that the strength of the nanocomposites can only
be calculated using the mixture theory if the average grain size is above a critical value. Below the critical
grain size, an accurate account of interfacial stresses is important to the prediction of the strength. For
composites with grain sizes above the critical value, the observed dependence of strength on volume fraction
is in agreement with experimental observations.
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I. INTRODUCTION

Molecular-dynamics �MD� simulations are an important
tool for analyzing the thermomechanical behavior of materi-
als and have been widely used for single-phase materials,
e.g., Buehler et al.,1 partly because of readily available
atomic potentials for such systems. One of the primary fo-
cuses of recent development in materials research is the syn-
thesis of multicomponent materials in order to achieve mul-
tifunctionality. Fe2O3+Al nanocomposites synthesized
through a sol-gel process are one example that offers the
promise of combined chemical reactivity and mechanical
strength when mixed with appropriate nanoscopic reinforce-
ments such as epoxy.2 The analyses of such composite ma-
terial systems, however, require more complex potentials
which are often not available. Consequently, there is a strong
need for developing interatomic potentials for material sys-
tems consisting of more than one component.

This research focuses on the development of an inter-
atomic potential for describing mechanical deformation in
�-Fe2O3+fcc-Al nanocomposites which are chemically ac-
tive Thermite™ mixtures. Obviously, the possibility of the
formation of Al2O3, Fe, and other intermediate states needs
to be considered. Therefore, the potential is required to si-
multaneously describe the behavior of �-Fe2O3, fcc Al,
�-Al2O3, and bcc Fe. To state it differently, Al-Al, Fe-Fe,

Al-Fe, Al-O, Fe-O, and O-O interactions and the coupling

1098-0121/2006/73�17�/174116�16� 174116
between these interactions must be accounted for. This task
necessitates a functional form that allows multibody, pair-
wise, and electrostatic interactions among different species to
be described. Our approach here is to first fit the potential
parameters for the Al-Al, Fe-Fe, Al-O, Fe-O, and O-O inter-
actions to the lattice constants, elastic moduli, and cohesive
energies of fcc Al, bcc Fe, �-Fe2O3, and �-Al2O3. To deter-
mine the Fe-Al parameters, the potential is then fitted to the
lattice constants and cohesive energies of B2-FeAl. Conse-
quently, the potential is capable of simultaneously describing
the crystalline properties of fcc Al, bcc Fe, B2-FeAl,
�-Fe2O3, and �-Al2O3. With this relatively general applica-
bility, we surmise that the potential provides reasonable ap-
proximations of the Al-Al, Fe-Fe, Al-Fe, Al-O, Fe-O, and
O-O interactions and their coupling in the presence of each
other as may exist in a general system with a combination of
these components.

Both �-Fe2O3 and �-Al2O3 belong to a family of scale-
nohedral hexagonal �trigonal� crystals, cf. Wyckoff.3 These
oxides can be characterized as having mixed ionic and cova-
lent bonds. Interatomic potentials for these oxides have been
developed following fully ionic descriptions, e.g., Mackrodt
and Stewart4 and Gale et al.;5 embedded atom method
�EAM�-based approaches, e.g., Baskes,6 Strietz and
Mintmire,7 and Ohira and Inoue,8 density functional-based
approaches, e.g., Kenny et al.;9 and mixed covalent-ionic
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descriptions, e.g., Belashchenko and Ostraovski. Al, Fe,
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and B2-FeAl are parts of the cubic family of crystals. Poten-
tials for Al have been described by Foiles et al.,11 Voter and
Chen,12 Baskes,6 and Mishin et al.13 Among these, the
MEAM-based formulation of Baskes6 has the smallest cutoff
range, i.e., only nearest neighbor interactions are considered.
This potential has been recently modified by Baskes et al.14

based on ab initio results to more accurately predict the
stacking fault energy and surface energy of Al. Interatomic
potentials for Fe have been developed by Pasianot et al.,15

Baskes,6 Simonelli et al.,16 and Farkas et al.17 Among these
potentials, the model of Farkas et al.17 takes into account
both ab initio and experimental data. Potential models for
Fe-Al intermetallic systems have been developed by Besson
and Morillo18 and Vailhe and Farkas.19 The model of Besson
and Morillo18 is fitted to a wider range of properties and is
widely applicable. In our research here, the functional form
is a combination of the EAM functional by Foiles et al.,11 the
pair function by Besson and Morillo,18 and the second-order
electrostatic function by Strietz and Mintmire.7

One requirement for a multicomponent interatomic poten-
tial is that it prescribes a smooth transition of structure at the
interface between two different crystalline regions. For ex-
ample, Al close to Fe2O3 can be oxidized to form an AlpOq
structure or it can bond with Fe to form an AlxFey structure.
Two commonly used approaches to achieve such transition
are �1� the Tersoff bond-order potential, cf. Tersoff,20 and �2�
the electrostatics �ES� +EAM model of Strietz and
Mintmire.7 The Tersoff bond-order potential was initially
used to model phases of silicon and was later extended to
describe hydrocarbon systems by Brenner21 in the form of
the Brenner reactive bond-order potential �REBO�. The latest
variation in this scheme is the generalized extended empiri-
cal bond-order dependent �GEEBOD� potential with a func-
tional representation of the van der Waals interactions and
the electrostatic interactions, see Che et al.22 The ES
+EAM model has been used by Kalia et al.23 to analyze
pressure-induced reactions between aluminum and oxygen
under quasistatic conditions. This model uses the principle of
electronegativity equalization, see Mortier et al.24 and Rappe
and Goddard III,25 to determine the local-environment-
dependent charge of an atom. It is ideally suited for the de-
scription of systems which have primarily mixed ionic-
covalent bonding. Similar approaches are taken by Rick et
al.26 for polar systems, by Liu et al.27 for a new ab initio
water potential, and by Goddard III et al.28 for pressure-
induced phase transformation in ferroelectrics. In the current
work, a modified ES+EAM term is included in the potential
for describing the transition from one crystal system to the
other at the interfaces between a metallic system such as Al
and an ionic-covalent system such as Fe2O3.

II. FUNCTIONAL FORM OF THE INTERATOMIC
POTENTIAL

The functional form of the potential is a combination of
existing potentials in the literature for the individual crystal-

line components, i.e.,
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In the above expression, ri is the position vector of atom i
and rij is the distance between atoms i and j. This potential
expression contains a glue potential term �Eglue� similar to
the EAM potential with a generalized cluster functional �cf.
Carlsson29� and an electrostatic potential term �Ees� for
second-order electrostatic interactions. The electrostatic in-
teractions are considered for point charges located at atomic
core centers as well as for diffused charges around the
atomic cores. Specifically, for each atomic species �Al, Fe, or
O� the total energy is a function of atomic position vector r
and charges q in the form

E�r,q� = Eglue�r� + Ees�r,q� . �2�

Here,

Eglue�r� = �
i

Fi��
j

� j� +
1

2 �
i,j�i�j�

�ij �3�

is the glue potential with a generalized cluster functional
F�� j� j� and a pair interaction potential �ij. The form of
F�� j� j� is chosen as

F��
j

� j� = E0A
�
j

� j ln��
j

� j��B
. �4�

In the above expression, E0, A, and B are fitting parameters
�they are different for Al, Fe, and O� and � is the embedding
electron density �see Baskes6� whose functional form is
taken to be the same as that used by Foiles et al.11 The pair
interaction function �ij�rij� is based on that used by Besson
and Morillo18 for Fe-Al alloys, i.e.,

�ij�r� = �ij�rij� − �ij�Dp� +
Dp

20

1 − � rij

Dp
�20��ij� �Dp�

for rij � Dp. �5�

Note that the interaction goes to zero smoothly at the cutoff
distance Dp ·�ij�rij� in the above expression is taken as

�ij�rij� = �0�exp�− 2��rij − t�� − 2 exp�− ��rij − t�� . �6�

Here, �, �0, and t are parameters to be determined through
fitting �they are different for Al-Al, Fe-Fe, Al-Fe, Al-O,
Fe-O, and O-O pairs�. The electrostatic term in Eq. �2� is

�
i

Ees�ri,qi� = �
i

qi�i +
1

2 �
i,j�i�j�

qiqjVij . �7�

Here, � is the instantaneous electronegativity and V is the
electrostatic pair interaction potential. Ees�r ,q� includes
point charge interactions as well as interactions among
charges distributed around the centers of atomic cores. For
simplicity, the charge distributions are taken to be spherical.
The expression for Ees�r ,q� is obtained by describing the
energy Ei�qi� of a neutral atom i as a Taylor series in its

25
valence charge qi �see Rappe and Goddard III �, i.e.,
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Ei�qi� = Ei�0� + �i
0qi +

1

2
Ji

0qi
2. �8�

The first derivative �i
0 on the right-hand side is denoted as

the electronegativity, see Mortier et al.24 The second deriva-
tive Ji

0 has been associated with atomic hardness, see Parr
and Pearson,30 or with self-Coulomb repulsion, see Rappe
and Goddard III.25 The electrostatic energy Ees�r ,q� of a set
of interacting atoms with atomic charges qi is the sum of the
atomic energies Ei and the electrostatic interaction energies
between all pairs of atoms, i.e.,

�
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i

Ei�qi� +
1

2 �
i,j�i�j�

Vij�rij;qi,qj�

= �
i
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1
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� d3r1� d3r2�i�r1;ri,qi�� j�r2;ri,qi�/r12� .

�9�

Here, the second term on the right-hand side describes elec-
trostatic interactions, with �i�r1 ;ri ,qi� being the charge dis-
tribution in a spherical volume defined by position vector r1
around atom i with total charge qi. r12 in the above expres-
sion defines a volume that results from the intersection of
two spherical volumes with radii r1 and r2. The form used
for �i�r1 ;ri ,qi� is given by Strietz and Mintmire,7 i.e.,

�i�r1;ri,qi� = Zi
�r1 − ri� + �qi − Zi�f i�r1 − ri� . �10�

Here, Zi is the effective nuclear point charge which must
satisfy the condition 0�Z �Z , with Z being the total
i a a

+ ZiZj��f i�f j� − �i�f j� − �j�f i� + 1/rij� . �17�
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nuclear charge of the species to which atom i belongs �Al,
Fe, or O�. Function f i describes the radial distribution of the
valence charges in space. It is chosen to be in the Gaussian
form to correspond to the Slater 1s orbital with a parameter
�i, i.e.,

f i�r� =
�i

3

�
exp�− 2�ir� . �11�

Placing �i�r1 ;qi� from Eq. �10� in Eq. �9� leads to

�
i,j�i�j�

Vij�rij;qi,qj� = �
i

�
j��i�

�qiqj�f i�f j� + qiZj��j�f i� − �f i�f j��

+ qjZi��i�f j� − �f i�f j�� + ZiZj��f i�f j�

− �i�f j� − �j�f i� + 1/rij� . �12�

Here,

�f i�f j� =� d3r1� d3r2
f i�r1�f j�r2�

r12
�13�

is the two-center Coulomb interaction integral between f i
and f j and

�j�f i� =� d3r
f i�r�

�r − r j�
�14�

is the nuclear attraction integral. The integration in the above
equations can be easily calculated using prolatorial spheroi-
dal coordinates, see Roothan.31 The expressions for these
integrals are

�j�f i� =
1

rij
�1 − ��1 + �irij�exp�− 2�irij�� , �15�
and
�16�
Equations �9� and �12� can be combined to yield
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1
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The above expression can be simplified and expressed as

Ees = E0 + �
i
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1

2 �
i,j�i�j�

qiqjEij , �18�

such that
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defines the ground state energy,

�i = �i
0 + �

i,j�j�i�
Zj��j�f i� − �f i�f j�� = �i

0

+ �
i,j�j�i�
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f j�r�
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�
�20�
defines the instantaneous electronegativity, and
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Eij = �Ji
0 i = j

� d3r1� d3r2
f i�r1�f j�r2�

r12
i � j � �21�

defines the electrostatic interactions in the system. The expo-
nential form of f leads the integrals in the above equations to
decompose into a leading 1/rij term and an additional term
to exponentially decay as a function of rij. All lattice sums,
therefore, can be decomposed into terms involving 1/rij and
terms which are exponentially damped. The long range terms
cancel each other out in Eq. �20�, leaving only 1/rij terms in

the expression for Eij in Eq. �21�. The reduced expression is
�22�

for �i and

�23�
for Eij. In Eq. �19�, E0 depends only on the nuclear charges
and does not depend on charges qi. Correspondingly, E0 is
not accounted for separately during energy calculations. This
term is considered to be included in the glue part Eglue of the
interatomic potential which consists of a volume-dependent
many-body term accounting for the ground state zero charge
energy and a term accounting for the effective pair interac-
tions. Overall, the parameters needed to completely specify
the potential are

�1� A, B, r0, , t, and cutoff distance Dp for describing the
density functional and cluster function for each of Al, Fe,
and O �a subtotal of 3	6=18 parameters�;
�2� Dp, �0, �, and tk for describing each of the Al-Al,
Al-Fe, Fe-Fe, O-O, Al-O, and Fe-O effective pair interac-
tions �a subtotal of 6	4=24 parameters�; and

�3� � �Gaussian charge distribution parameter�, Z �core
charge�, �0, J0, and the short range electrostatic cutoff radius
�rES� for exponentially decaying terms of the interatomic po-
tential for specifying the electrostatic energy of Al, O, and Fe
atoms �a subtotal of 3	5=15 parameters�.
The total number of parameters is 57. Based on the above
description, for an Al+Fe2O3 nanocomposite structure, the
interatomic potential has �in the following, � stands for one
of the Al, Fe, or O species�
-4
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as the electrostatic term, and

F� = E0
�A���� �Al + � �Fe + � �O�ln�� �Al + � �Fe + � �O��B�

, �25�

as the cluster functional term, and
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�26�
as the pair interaction term. In the Al phase of the composite,
only FAl and �pair

Al terms are used. In these terms, Al-O and
Al-Fe interactions are not considered. The parameters in
these terms are obtained by fitting to the properties of fcc Al.
In the Fe2O3 phase of the composite, EES

Fe , EES
O , FFe, FO, �pair

Fe ,
and �pair

O terms are used. In these terms, Fe-Al and O-Al
interactions are not considered. The parameters in these
terms are obtained by fitting to the properties of �-Fe2O3.

At the interfaces of Al and Fe2O3, all the above terms
with the inclusion of an additional term EES

Al are considered.
EES

Al is used to account for the possibility that Al atoms at the
interface may be oxidized under the effect of charged Fe and
O atoms. Electronegativity equalization, cf. Strietz and
Mintmire,7 is carried out to determine atomic charges of the
Al, Fe, and O atoms in an interfacial region covered by the
short range electrostatic cutoff radius �10 Å�. The value of
10 Å here is obtained by matching the values of the Cou-
lomb energy and the Coulomb virial as a function of the
short range electrostatic cutoff. In addition, a convergence
analysis for the variation in the electrostatic energy as a func-
tion of the short range cutoff is carried out. The value of
10 Å satisfied both criteria. This choice of cutoff radius cor-
responds to a description of the homogeneous crystalline
systems. It is possible that nanocrystalline grain deformation
mechanisms may be affected by changes in the cutoff radius,
e.g., see Ogata et al.32 In this respect, the use of the inter-
atomic potential in nanocrystalline structures involves a de-
gree of approximation.

The electronegativity equalization is based on a descrip-
tion of the total electrostatic energy of an array of atoms as a
function of the atomic charges �valences� and their positions,
see Eqs. �9� and �19�. For well-behaved parameters Ji

0 and
functions f i�r�, the electrostatic energy has a well-defined

minimum. The values of charges qi are chosen such that the
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electrostatic energy Ees is minimized subject to the constraint
that the sum of charges is constant, see Strietz and
Mintmire.7 This condition is algebraically equivalent to the
electronegativity equalization condition which requires that
the chemical potentials �=�i=�Ees /�qi be equal. With the
consideration of all EES

Al , EES
Fe , EES

O , FAl, FFe, FO, �pair
Al , �pair

Fe ,
and �pair

O terms, the behavior of Al, Fe, and O atoms at Al-
Fe2O3 interfaces can be accounted for. This procedure for
calculating interatomic interactions in a composite represents
an approximation and is one of the underlying assumptions
of the MD framework in the current work. The potential is
specific to Al-Al, Fe-Fe, Al-Fe, Al-O, Fe-O, and O-O inter-
actions with parameters fitted to fcc Al, bcc Fe, �-Al2O3, and
�-Fe2O3. The required fitting of all combinations of Al-Fe-O
species to obtain bulk properties such as crystal lattice pa-
rameters, elastic constants, the surface energies and stacking
fault energies of fcc Al, bcc Fe, �-Al2O3, and �-Fe2O3 rep-
resents a fairly large database. Therefore, the potential is
regarded as reasonable for application to fcc Al+�-Fe2O3
composites. The accuracy for application to other polymor-
phs of alumina or of iron oxide is unknown, and, therefore, is
not automatically recommended. Within this context, we sur-
mise that the reasonable approximations of the Al-Al, Fe-Fe,
Al-Fe, Al-O, Fe-O, and O-O interactions through fitting to
the individual phase properties and consideration of the cou-
pling of these interactions in the presence of each other using
electronegativity equalization make it possible to describe
interatomic interactions in a system that consists of a com-
bination of the individual phases directly analyzed. A more
accurate description of both composite structures and various
polymorphs would involve more extensive fitting which per-
haps can be the subject of a future paper. Such an endeavor
can certainly benefit from more extensive ab inito calcula-
tions. Alternatively, it may be better pursued in a first prin-

ciples setting.
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III. FITTING AND TESTING OF THE POTENTIAL
PARAMETERS

The potential parameters are determined by fitting the
functional form to the lattice constants, cohesive energies,
and elastic constants of fcc Al, bcc Fe, �-Al2O3, and
�-Fe2O3. The parameters related to the Fe-Al pair interac-
tions are determined by fitting to the formula unit energy of
B2-FeAl. The fitting process involves the least square mini-
mization of the sum of squared differences between target
property values �experimental or ab initio� and values calcu-
lated from a trial parameter set. The minimization follows
the genetic algorithm-based approach of Gale and Rohl33 and
is carried out for residual

F = �
k

�k�fk − fk�Ptrial��2 �27�

with respect to all possible choices of parameters. Here, �k
are weights and are taken as unity and fk represents the
physical properties being fitted to. In this procedure, a
functional parameter set corresponding to a global minimum
of F is first obtained using a genetic algorithm, see Woodley
et al.34 and Cappello and Mancuso.35 This parameter set is
then subjected to refined local minimization using the
Newton-Raphson �NR� approach. Use of the genetic algo-
rithm before the NR scheme forms a general approach for the
least square minimization of residual F, see Gale and Rohl.33

An alternative is to use quantum mechanical treatments fol-
lowed by an empirical fitting based on the physics of the
problem, see Gale and Rohl.33 Differences between the crys-
talline components and the lack of information regarding
their interactions in the current work dictate the use of the
genetic algorithm-based approach.

Since the potential is a combination of existing potentials
for individual crystalline components in the literature, the
initial trial parameter sets are taken to be those in the litera-
ture for the individual components. The NR fit starts with a
numerical Hessian �second-order derivative matrix� and
changes to Broyden-Fletcher-Goldfarb-Shanno �BFGS� up-
dating of the exact Hessian �see Press et al.36� based on the
magnitude of the gradient norm of residual F as the gradient
norm reduces in magnitude. Once the minimum of the gra-
dient norm is obtained, the residual F is subjected to rational
function optimization �RFO� �see Banerjee et al.37� which
removes imaginary modes from the Hessian, thus forcing it
to be positive-definite and ensuring that the parameters ob-
174116
tained correspond to a stable lattice structure. This structure
in general is associated with nonzero internal forces at the
atomic positions. Therefore, a relaxation fitting is carried out
following the RFO step in order to zero out the internal
forces. In this scheme, the displacements of the force-field
optimized structure relative to the target structure also form
part of the fitting function, as opposed to the use of only the
forces on the atoms at the target structure as in a conven-
tional fit, see Gale and Rohl.33 This treatment is considered
to be superior to conventional fitting schemes since it probes
the forces as well as displacements, rather than just the
former. During fitting, the density and functional parameters
are obtained first, followed by the pair parameters and then
the electrostatic parameters.

Figure 1 provides a schematic illustration of the fitting
sequence. The Al and Fe cluster functional parameters and
the Al-Al, Fe-Fe, and Al-Fe pair parameters are first deter-
mined by fitting to the properties of fcc Al, bcc Fe, and
B2-FeAl. In subsequent fitting, the O cluster functional pa-
rameters, the O-O, Al-O, and Fe-O pair parameters, and
the Al, Fe, and O electrostatic parameters are determined
solely by fitting to the properties of �-Al2O3 and �-Fe2O3.
During this procedure, the Al and Fe cluster functional pa-
rameters and the Al-Al and Fe-Fe pair parameters are kept
constant. The Al electrostatic parameters and the Al-O pair
parameters are solely determined by fitting to the properties
of �-Al2O3. The Fe electrostatic parameters and the Fe-O
pair parameters are solely determined by fitting to the
properties of �-Fe2O3. However, the O cluster functional
parameters, the O electrostatic parameters, and the O-O
pair parameters are determined to obtain the best fit to the
�-Al2O3 and �-Fe2O3 properties simultaneously. For this
purpose, the Al and Fe electrostatic parameters and the Al-O
and Fe-O pair parameters are determined first by fitting to
the properties of �-Al2O3 and �-Fe2O3. Afterward, the fitting
procedure focuses on varying the O cluster functional param-
eters, the O electrostatic parameters, and the O-O pair pa-
rameters while all other parameters are kept fixed. The fitting
is carried out in a molecular statics code “general utility
lattice statics-1.3” �GULP�, by Gale and Rohl.33 For the pur-
pose of interatomic potential fitting, this code required
implementation of the potential functional form. The specific
information required is the functional form of the energy and
its derivative up to the third order. GULP has the inherent
ability to develop crystal structures from the specification of

FIG. 1. Illustration of the fitting sequence.
space group numbers �167 for Al2O3 and �-Fe2O3, 224 for
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bcc Fe, and 229 for fcc Al�. Once the functional form of the
energy and its derivatives up to third order are implemented,
the fitting is straightforwardly carried out using the proce-
dure outlined.

Calculations of the elastic constants are based on the work
of Catlow and Mackrodt38 who use the Born and Huang39

theory of crystal lattice. Their main contribution is the inclu-
sion of crystal symmetry to speed up calculations. Tempera-
ture is not explicitly considered in this formulation. Instead,

TABLE I. Fitted and predicted properties of fcc Al. � *� indicates
comparable polycrystalline values since single-crystalline values ar

Mishin et al.a

Lattice Properties a0�Å� 4.05

E0�eV/atom� −3.36

C11�GPa� 114

C12�GPa� 61.6

C44�GPa� 31.6

B�GPa� 79
*Surface
Energy

�S �110�
�mJ/m2�

1006

�S �111�
�mJ/m2�

870

�S �100�
�mJ/m2�

943

*Stacking Fault
Energy

�SF �mJ/m2�
a

6
�1̄12̄��111

168/146

aReference 13.
bReference 12.
cWeast �Ref. 41�.
dSimons and Wang �Ref. 42�.
eMurr �Ref. 43�.
fHartford et al. �Ref. 44�.

TABLE II. Fitted and predicted properties of bcc Fe. � *� indi
indicates comparable polycrystalline values since single-crystalline

Fark

Lattice Properties a0�Å�
E0�eV/atom�

C11�GPa�
C12�GPa�
C44�GPa�
B�GPa�

*Surfaces
Energy

�S �110� �mJ/m2�
�S �111� �mJ/m2�
�S �100� �mJ/m2�

�US �mJ/m2�
*Stacking Fault

Energy
a

2
�111��110

aReference 17.
bKittel �Ref. 45�.
cHirth and Lothe �Ref. 46�.
d
Mendelev et al. �Ref. 47�.

174116
the fitting is assumed to be carried out at the temperature at
which the properties are specified. We use properties speci-
fied at 300 K. Table I–V show the properties of fcc Al, bcc
Fe, �-Al2O3, and �-Fe2O3 used during fitting. The tables
also show values of the lattice constants, elastic constants,
and cohesive energies predicted by the potential. Reasonable
agreement is seen between the predicted values and the ex-
perimental �ab initio� values. In the case of fcc Al, the fitting
fares better than was the case for the potential of Voter and

erties used for testing the fitted potential parameter set; �‡� indicates
vailable.

ter and Chenb Experimental �ab initio� Prediction

4.05 4.05c 4.05

−3.36 −3.36c −3.51

107 114.3d 116.56

65.2 61.9d 60.13

32.2 31.6d 25.13

79 79d 78.9

959 980‡e 1102.4

823 980‡e 913.7

855 980‡e 1001.5

93/76 213�unstable�,
166 �stable�e,f

265/175

properties used for testing the fitted potential parameter set; �‡�
es are unavailable.

t al.a Experimental �ab initio� Prediction

2.87b 2.87

8 −4.28b −4.28

252c 251.4

138c 136.7

122c 122

173c 174.93

2100‡d 1760

2100‡d 2035.7

2100‡d 1936.6

¯ 1600/575
prop
e una

Vo
cates
valu

as e

2.87

−4.2

256

136

113

173

1530

2027

1890

1100
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Chen.12 In the case of bcc Fe, the fitting is comparable to the
predictions made by the potential of Farkas et al.17 In the
case of �-Al2O3, the fitted properties compare well with the
values provided by Strietz and Mintmire.7 For �-Fe2O3, no
comparable interatomic potential is available. Accordingly,
the properties are compared to the experimental values pro-
vided by Huntington.40 Overall, the predictions compare well
with established potentials for the individual crystalline com-
ponents.

Deformation analyses of a nanocrystalline system �single-
phase or multiple-phase� require that interactions along inter-
faces as well as formations of line defects such as disloca-
tions and planar defects �e.g., stacking faults� are well
characterized by the interatomic potential, e.g., Kadau et
al.,55 Abraham,56 Van Swygenhoven et al.,57 and Buehler et
al.1 The potential already provides an accurate account for
bulk modulus, elastic constants, lattice constants, and cohe-
sive energies of the modeled crystal systems. We further re-
quire the potential to be able to predict the values of stacking
fault and surface energies of the modeled crystal systems and
compare well with those predicted by available potentials in
literature. Based on the results from MD simulations of qua-
sistatic deformation in nanocrystalline materials, e.g.,
Schiøtz and Jacobsen,58 Van Swygenhoven et al.,57 and of
shock-induced deformation in single crystals, e.g., Kum59

TABLE III. Fitted and pre

Lattice Properties a0�Å�
B2-FeAl E0�eV/Fe-Al pair�
aFu and Yoo �Ref. 48�.
bHultgreen et al. �Ref. 49�.

TABLE IV. Fitted and predicted properties of �-Al2O3. � *� ind

Strietz and

Lattice
Properties

Lattice Energy �eV� −31

qAl�e� 2.

C11�GPa� 53

C12�GPa� 18

C13�GPa� 10

C33�GPa� 50

C14�GPa� −3

C44�GPa� 13

a0�Å� 4.76

C0�Å� 12.9
*Surface
Energy

�mJ/m2�

�0001�
�unrelaxed�

36

�0001�
�relaxed�

26

aReference 7.
bWeast �Ref. 41�.
cLewis and Catlow �Ref. 50�.
dWachtman Jr. et al. �Ref. 51�.
e
Manassidis and Gillan �Ref. 52�.
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and Bringa et al.,60 we surmise that the property database
used for fitting and testing the parameters of the interatomic
potential is sufficient to obtain a realistic description of de-
formation in the Al+Fe2O3 material system.

Table I–V show a comparison of the surface and general-
ized stacking fault energies of the crystalline components
predicted by the potential with the corresponding experimen-
tal �ab initio� values reported in the literature. The calcula-
tions for fcc Al and bcc Fe use the approach of Zimmerman
et al.61 In this approach, a shear displacement is given to
one-half of a block of a single crystal relative to the other
part. After the shear displacement, the energy per unit area of
the crystalline block is calculated. The difference between
this energy and the bulk energy per unit area is then plotted
as a function of the shear displacement. As the shear dis-
placement increases, the difference between the two energy
values reaches a peak and then starts to dip. Later, it reaches
a minimum at the shear displacement corresponding to the
formation of a stable stacking fault. The peak of the curve is
referred to as the unstable stacking fault energy ��US in Fig.
2� and the minimum is referred to as the stable stacking fault

energy ��SF in Fig. 2�. In Al, an a /2�1̄10� unit dislocation

dissociates into an a /6�1̄1̄2̄� and an a /6�1̄21̄� partial dislo-
cation. Therefore, the energy associated with an a /6�112�
	�111 partial dislocation is of importance. In Fe, the

d properties of B2-FeAl.

Experimental �ab initio� Prediction

2.90a 2.90

−8.15b −8.15

es properties used for testing the fitted potential parameter set.

tmirea Experimental �ab initio� Prediction

−31.8 �I unit�b −31.8

1.3c 3.0

497d 505.9

164d 188.2

111d 97.77

498d 469.23

−24d −64.98

147d 165.97

4.7602b 4.7602

12.9912d 12.9912

3770e 3550

1760e 2500
dicte
icat

Min

.8

9

7

0

6

9

0

0

02

912

70

70
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a /2�111��110 dislocation energy is of importance, cf. Far-
kas et al.17 To calculate the a /6�112��111 generalized stack-
ing fault energy of Al, displacement increments of 0.25 Å

are introduced on the �111̄� plane in the �1̄1̄2̄� direction. The
x, y, and z axes of the crystalline block are therefore aligned

in the �111̄�, �1̄1̄2̄�, and �1̄10� crystallographic orientations,
respectively. In Fe, the a /2�111��110� generalized stacking
fault energy is calculated with displacement increments of
0.4 Å in the �111� direction on the �110� plane. The x, y, and

z axes of the crystalline block are aligned in the �110�, �1̄12�,
and �11̄1� crystallographic orientations, respectively. The en-
ergy vs shear displacement curves for the above calculations
are shown in Fig. 2.

The potential overpredicts the stable and unstable stack-
ing fault energies for both fcc Al and bcc Fe. In fcc Al, the
extent of overprediction is the same as that of the well-
established Mishin and Farkas potential, see Mishin et al.13

which has been extremely useful in modeling surface defect

TABLE V. Fitted and predicted properties of �-Fe2O3. � *� in-
dicates properties used for testing the fitted potential parameter set.

Experimental
�abinitio� Prediction

Lattice Properties Lattice Energy
�eV�

−101.178 �I unit�a −101.185

qAl�e� 2.602a 3.0

C11�GPa� 242b 238.2

C12�GPa� 55b 50.72

C13�GPa� 16b 28.75

C33�GPa� 228b 223.08

C14�GPa� −13b −13.12

C44�GPa� 85b 78.05

a0�Å� 5.035a 5.035

C0�Å� 13.747a 13.747
*Surface Energy

�mJ/m2�
�0001�

�unrelaxed�
5260c 5540

�0001�
�relaxed�

1530c 2050

aCatti et al. �Ref. 53�.
bHuntington �Ref. 40�.
cMackrodt et al. �Ref. 54�.

¯¯¯
FIG. 2. �a� Generalized a /6�112��111 stacking fault energy of fcc A

174116
formation in Al single crystals and polycrystals. For Fe, ex-
perimental or quantum mechanical values of the stacking
fault energy are not available in the literature. Therefore, we
choose to compare the results of our calculations with the
results of a well-established Farkas et al.17 potential. The
predicted value here is of the same order of magnitude as
that given by the Farkas et al.17 potential. Overall, the stack-
ing fault energies suggest that the potential compares well
with existing single-component potentials in the literature
when it is specialized to Al and Fe.

The thermodynamic penalty for cleaving a surface from a
bulk material is measured by the surface energy. Given a
bulk energy of Ebulk and an energy Esurf for the same system
with a surface created, the surface energy is defined as �s
= �Ebulk−Esurf� /A. Here, A is the area of the newly created
surface, cf. Gale and Rohl.33 In this paper, we follow the
approach of Strietz and Mintmire7 for calculating �s by cre-
ating a free surface along the desired cleavage direction us-
ing three-dimensional �3D� periodic boundary conditions
�PBCs�, see Gale and Rohl.33 The unrelaxed surface energy
is calculated by subtracting the energy of bulk crystal from
the energy of an unrelaxed cleaved crystal. The relaxed sur-
face energy is calculated by subtracting the energy of bulk
crystal from the energy of a relaxed cleaved crystal �via MD
equilibration at near 0 K�. Since the surface energy values
reported in the literature for fcc Al and bcc Fe are not highly
reliable, it is desired that the surface energies of low-index
planes such as �100, �110, and �111 planes be close to the
surface energy of an average orientation. This value is
980 mJ/m2 for fcc Al �Mishin et al.13� and 2452 mJ/m2 for
bcc Fe �Murr43�. In addition, we require that �s�110
��s�100��s�111 in fcc Al and �s�111��s�100
��s�110 in bcc Fe. Both of these requirements are met, as
shown in Tables I and II. For �-Fe2O3 and �-Al2O3, the
surface energy values for �0001 surface are calculated. Both
the relaxed and unrelaxed values are quite close to what is
reported in the literature, see Mackrodt et al.54 and Manassi-
dis and Gillan,52 see Tables IV and V.

Overall, the potential along with the parameter set in
Tables VI and VII offers a useful tool for analyzing defor-
mation in the fcc Al+�-Fe2O3 material system. The potential
is implemented in the scalable parallel MD code DL�POLY

2.14, see Smith et al.,62 which uses the atom-decomposition
paradigm, see Vincent and Merz.63 The next sections discuss
the results of analyses on the mechanical deformation of a
nanocrystalline Al+Fe2O3 system using the potential.
l; �b� generalized a /2�111��110 stacking fault energy of bcc Fe.
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IV. GENERATION OF NANOCRYSTALLINE STRUCTURES

Nanocrystalline structures generated for deformation
analyses are:

�1� Nanocrystalline Al with three different average grain
sizes �PAl1 with an average grain size of 7.2 nm, PAl2 with
an average grain size of 4.7 nm, and PAl3 with an average
grain size of 3.9 nm�;

�2� Nanocrystalline �-Fe2O3 with three different average
grain sizes �PHt1 with an average grain size of 7.2 nm, PHt2
with an average grain size of 4.7 nm, and PHt3 with an av-
erage grain size of 3.9 nm�; and

�3� Nanocrystalline Al+�-Fe2O3 composites with two
different volume fractions: �a�. 60% fcc Al+40% �-Fe2O3
�NCP641 with an average grain size of 7.2 nm, NCP642
with an average grain size of 4.7 nm, and NCP643 with an
average grain size of 3.9 nm�, �b�. 40% fcc Al+60%
�-Fe2O3 �NCP461 with an average grain size of 7.2 nm,
NCP462 with an average grain size of 4.7 nm, and NCP463
with an average grain size of 3.9 nm�.
Nanocrystalline Al, �-Fe2O3, and their composites with the
same average grain size have the same grain orientation and
grain size distributions. The structures are generated by
growing grains inside a cubic box.

Grain orientations in the nanocrystalline structures play
an important role in determining structural strength. Schiøtz
et al.64 have previously carried out such an analysis and
found that the difference in strengths at various volume frac-
tions is of the order of 5%. This difference increases as the
number of grains decreases. However, it does not exceed
10% of the mean value. Since the purpose of the current
work is to verify the strength predictions made using the
potential developed here and to analyze the dependence of
strength on the volume fractions, we have considered only
one particular mix of orientations. In order to simulate bulk
nanocrystalline materials, the box is repeated in all three di-
mensions by imposing periodic boundary conditions �PBCs�.
Imposition of PBCs results in a nanocrystalline structure that

TABLE VI. Pair parameters of the potential.

� �eV� t �Å� � �Å−1� Cutoff �Å�

Al-Al 237.008963 4.003143 0.006436 7.0

Al-O 39.770657 1.021318 1.160757 7.0

Al-Fe 79.232208 2.098726 0.946525 7.0

Fe-Fe 1.073706 2.58029 0.969895 7.0

O-O 10.180285 1.0000 0.763738 7.0

Fe-O 2.653694 0.999972 2.110824 7.0

TABLE VII. Cluster and electr

A B
E0

�eV� r0 �Å� 0 �Å−1�

Al 0.9739 1.000 4.769 −3.024332 0.938493

Fe 0.041333 1.000 7.659 1.743248 1.01471

O 1.000 1.000 2.558 1.412648 1.806365
174116-
has unimodal distribution of grain sizes. Size of the cubic
box is limited by the maximum number of atoms that can be
accommodated in the nanocrystalline structure confined in
the box. The maximum number of atoms is limited by factors
such as the memory and the CPU time required for carrying
out MD simulations at a time scale of the order of picosec-
onds for a given interatomic potential. Taking into account
these considerations, the size of the cubic box is kept at
10 nm	10 nm	10 nm such that the maximum number of
atoms does not exceed 100 000. With this limitation, the
largest grain size obtained by the bidivision of the cubic box
in all three dimensions �a total of 8 grains� is approximately
8.2 nm with the average grain size being 7.2 nm.

Approaches frequently used for generating nanocrystal-
line structures are the monodispersive grain growth method;
see Gleiter,65 the melt growth method, see Keblinski et al.;66

and the Voronoi tessellation method, see Voronoi,67 Chen,68

and Schiøtz et al.64 The monodispersive grain growth tech-
nique is nonstatistical in nature. The Voronoi tessellation
method follows a fixed Voronoi-Poisson grain-size distribu-
tion which is rarely observed in experiments, see Gross and
Li.69 However, mesoscale simulations show that a Voronoi
starting structure evolves very quickly toward �but never
reaches� a log-normal distribution, see Haslam et al.70 Gross
and Li69 have combined the Monte Carlo method with the
Voronoi tessellation method for grain growth to generate
nanocrystalline structures with specified distribution of grain
size. This procedure is also similar to that of Chen.68 We
follow a similar procedure here. We generated nanocrystal-
line structures with three different average grain sizes: �1�
structures with 8 grains and an average grain size of 7.2 nm;
�2� structures with 27 grains and an average grain size of
4.7 nm; and �3� structures with 64 grains and an average
grain size of 3.9 nm. All nanocrystalline structures follow
log-normal grain-size distribution with 10% standard devia-
tion. Figure 3 shows the nanocrystalline structures with dif-
ferent average grain sizes and volume fractions of the Al
phase.

After geometric generation, all structures are equilibrated
at 300 K with PBCs applied in all directions. In Fig. 4, the
partial Al-Al radial distribution functions �RDFs� before and
after the MD equilibration for all nanocrystalline Al struc-
tures are shown. The RDFs differ from that of a perfect
fcc-Al crystal before and after equilibration in two ways.
First, the peaks are not sharp delta functions and are some-
what smeared even before equilibration due to a degree of
mismatch along the grain boundaries. Second, the RDFs do
not approach zero after the first two peaks. The broadening
of the RDF peaks after equilibration is in part due to the
strain fields inside the grains �originating from the grain

ic parameters of the potential.

t0 � �eV� J �eV� � �Å−1� Z

86.15 −55.333 1.94422 0.77344 3.5245

2.128185 1.5834 2.59674 0.595758 6.2

0.895404 5.48 14.03 2.14 0.0
ostat
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boundaries� and in part due to atoms in or near the grain
boundaries sitting close to �but not at� the lattice positions.
The fact that the RDF does not go to zero between the peaks
denotes a disorder which in this case comes from the grain
boundaries. The average depth of the RDF valleys decreases
with the average grain size. Clearly, this is due to the fact
that at small grain sizes the fraction of atoms in grain bound-
aries is higher. PAl1 has a higher fraction of atoms in bulk
fcc-Al crystalline order and therefore sharper RDF peaks
than PAl2 and PAl3. Similar features are observed for all
structures as well. MD simulations are performed in uniaxial
tension and compression using the method of Schiøtz et al.64

and Schiøtz et al.71 In this method, an algorithm based on a
combination of NPT and NVT ensembles is used. Quasistatic
deformation is carried out by stretching samples in one di-
rection. Stretching at a specified rate is carried out using a
modified version of the Melchionna et al.72 NPT equations of
motion, cf. Spearot et al.73 The strain is calculated by record-
ing the position of individual atoms. The average stress is

FIG. 3. �Color online� Nanocrystalline structures with different
Al volume fractions and grain sizes; �a� 7.2 nm, �b� 4.7 nm, and �c�
3.9 nm �Al atoms are red, Fe atoms are blue, and O atoms are
green�.

FIG. 4. �Color online� A comparison of the partial Al-Al RDFs

7.2 nm, before and after MD equilibration.

174116-
evaluated at each strain level to yield stress-strain relations.
An alternative is to use the method of Van Swygenhoven and
Caro74 who recorded strain-time curves at different values of
applied stress. Spearot et al.73 have used both methods and
found that the modified Schiøtz et al.64 works better by simu-
lating a controlled displacement test.

V. TENSILE DEFORMATION OF POLYCRYSTALLINE Al

The simulations focus on analyzing the accuracy of the
interatomic potential. Consequently, calculated strength val-
ues are compared with the experimental measurements. In
addition, defect attributes are also analyzed using the poten-
tial. In the following discussions, the flow strength is calcu-
lated as the average stress in the region on the stress-strain
curve where stress reaches its maximum. This procedure is
similar to that of Schiøtz et al.64 and is chosen for facilitating
comparisons. Extensive experimental as well as theoretical
research has been carried out to analyze the deformation
mechanisms in nanocrystalline Al and other fcc materials,
e.g., Lu et al.,75 Chung et al.,76 Dalla Torre and Van
Swygenhoven,77 Yamakov et al.,78 Chen et al.,79 and Liao et
al.80 Most MD simulations have been performed on fully
dense metals �primarily Ni, Cu, and Pd�. The samples are
free of impurities with adjacent grains separated primarily by
high-angle grain boundaries. MD simulations have estab-
lished that the deformation mechanisms at room temperature
fall into three main categories. These are

�1� Intergranular mechanisms consisting of uncorrelated
atom shuffling at high-angle grain boundaries which results
in grain boundary sliding, cf. Schiøtz et al.71 and Schiøtz et
al.;64

�2� Intragranular mechanisms such as partial dislocation
emission and twinning in nanocrystalline metals with grain
sizes larger than 10 nm, cf. Liao et al.;81 and

�3� Cooperative grain behaviors, i.e., microshear banding
or rotation of clusters of grains, cf. Hasnaoui et al.82

A combination of the above deformation mechanisms is ob-
served during MD simulations here. Figure 5�a� shows the
stress-strain curves for PAl1, PAl2, and PAl3 in tension. The
values of Young’s modulus are 57.7 GPa for PAl1, 33.9 GPa
for PAl2, and 48.4 GPa for PAl3. The flow stress is taken as
the average of the stress values at strain levels of 4%, 6%,
and 8%. These strain levels are chosen because the stress in
at least one of the structures either becomes constant or

anocrystalline Al with grain size of �a� 3.9 nm, �b� 4.7 nm, and �c�
for n
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reaches a maximum at one of these strain values. We note
that similar strain levels have been used by other researchers,
e.g., Schiøtz et al.64 and Lu et al.75 The flow strength is
found to be 2.5 GPa for PAl1, 0.98 GPa for PAl2, and
0.74 GPa for PAl3. Overall, a softening trend in strength is
observed as the average grain size decreases. One exception
exists in the Young’s modulus value of PAl3 which is higher
than that of PAl2. Similar anomalies in stress-strain relations
have been observed in the work of Schiøtz and Jacobsen58 on
nanocrystalline Cu. This behavior can be explained by ac-
counting for the role of grain boundaries in the deformation.
At the length scale of analyses, sliding of grains along grain
boundaries is the primary mechanism of deformation. Dislo-
cation activity is minimal at this length scale. Total grain
boundary surface area increases as the grain size decreases,
resulting in softening of the structures. When the size scales
are similar for two structures, the difference in the fractions
of grain boundaries with high-angle mismatch and the differ-
ence in the fractions of atoms in defects and grain boundaries
play an important role. Higher fractions of defect atoms and
high-angle mismatch grain boundaries in PAl3 as compared
to those in PAl2 pose enhanced constraint on the movement
of atoms in PAl3 during initial stretching. The atoms locked
in the high-angle grain boundaries resist initial tensile defor-
mation, making PAl3 initially stronger than PAl2. However,
after significant deformation, the flow is mainly governed by
grain boundary sliding which is dominant in PAl3. Because
of the increased elongation, grain boundary atoms have
stronger mobility in PAl3 than in PAl2 during later stages of
deformation. Accordingly, PAl3 has a lower flow strength
value than PAl2.

The Young’s modulus for these structures varies from
33.9 GPa to 57.7 GPa and increases with grain size. These
values are smaller than the value of 70 GPa for single-
crystalline Al. Similarly, values ranging from 90–105 GPa
174116-
are seen in nanocrystalline Cu, compared with the value of
124 GPa for bulk Cu, cf. Gschneidner.83 As explained earlier,
the primary reason behind this trend is that the atoms in grain
boundaries cause the Young’s modulus to decrease. A similar
observation is made in simulations where the nanocrystalline
metal is grown from a molten phase, see Phillpot et al.84 In
our research, plastic yielding occurs at stress values of ap-
proximately 0.5–1.5 GPa in the structures analyzed. It is il-
lustrative to note that, the theoretical shear strength of single
crystalline Al �Gb/2�d� is approximately 3 GPa.

Figure 5�b� shows the variations of the flow strengths
with square root of the average grain size. Overall, a reverse
Hall-Petch �H-P� relation is observed. A similar effect has
been observed by Schiøtz et al.71 and Schiøtz et al.64 in
defect free nanocrystalline Cu and by Latapie and Farkas85 in
nanocrystalline �-iron. These are consistent with the experi-
mental data of Bonetti et al.86 At smaller grain sizes, the
arrangement of low-angle and high-angle grain boundaries
plays an important role in deformation. Consequently, the
dependence of flow strength on the square root of the aver-
age grain sizes deviates from a linear trend. A similar obser-
vation is reported by Schiøtz et al.71 for nanocrystalline Cu,
by Liao et al.80 for nanocrystalline Ni, and by El-Sherik et
al.87 in experiments on electroplated nanocrystalline Ni.

Grains in all nanocrystalline structures have three primary
orientations, viz. �100�, �110�, and �111�. Adjacent grains are
randomly rotated relative to each other. In the case of PAl,
this procedure results in a random placement of the low-
angle mismatch and high-angle mismatch grain boundaries.
One such cross section of PAl1 is shown in Fig. 6�a�. The
�100-�100 low-angle mismatch grain boundary is shown
with a broken line. The �100-�110, �110-�110, �110-�111,
and �111-�100 high-angle mismatch grain boundaries are
shown with solid lines. In order to compare deformation
mechanisms in nanocrystalline Al with those reported in the

FIG. 5. �Color online� �a� Tensile stress-strain
curves for nanocrystalline Al with different grain
sizes and �b� dependence of flow strength on av-
erage grain size for nanocrystalline Al.

FIG. 6. �Color online� �a� Identification of
grain boundary mismatch in nanocrystalline Al
with grain size 7.2 nm and �b� identification of
grain boundaries using the slip vector approach.
12
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literature, two different visualization schemes are used. Spe-
cifically, the slip-vector approach by Zimmerman et al.88 and
the centrosymmetry parameter by Kelchner et al.89 are used
for identifying defect atoms in fcc Al. Figure 6�b� shows
grain boundaries at the same cross section of PAl1 with at-
oms colored using the slip-vector approach �the correspond-
ing scale is also shown�. In Al, the unit glissile dislocation is
the a /2�110� dislocation with a Burgers vector magnitude of
2.87 Å which is close to the upper limit of the slip-vector
scale shown in Fig. 6�b�. For clarity, the figure shows only
those atoms that have slip-vector magnitudes above 0.25,
eliminating the atoms that occupy bulk lattice positions.
Clearly, atoms in grain boundaries can be easily differenti-
ated from atoms inside the grains using the slip-vector ap-
proach. However, the slip-vector approach is not useful for
identifying unit dislocations in structures made of, for ex-
ample, fcc-Al lattices, e.g., cf. Van Swygenhoven et al.90

Because of this, the centrosymmetry parameter by Kelchner
et al.89 is also used.

Recently, Van Swygenhoven et al.90 found that partial dis-
locations are rarely observed in nanocrystalline Al because of
the very small difference between the stable and unstable
stacking fault energies of single-crystalline Al. Their simula-
tions use Mishin and Farkas �Mishin et al.13� potential that is
one of the most established potential for Al. In order to con-
firm that the potential developed here also shows this impor-

FIG. 7. �Color online� Defect formation in PAl1 at a strain of
15% with atoms colored by �a� the slip-vector and �b� the cen-
trosymmetry parameter approaches �red circles identify dislocations
and old grain boundaries that disappear during deformation�.

FIG. 8. �Color online� The dependence of �a� Young’s moduli a

under tension.
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tant deformation feature, the defect formation in PAl1 is ana-
lyzed. Figure 7�a� shows PAl1 at 15% tensile strain with
atoms colored using the slip-vector approach. For conve-
nience of comparison, the same cross section as in Fig. 6�a�
is shown. Clearly, the �100-�100 low-angle mismatch grain
boundaries are smeared out during the grain elongation as-
sociated with stretching. In addition, there is a dislocation
emission from the �111-�100 high-angle mismatch grain
boundary. Figure 7�b� shows the same snapshot of the PAl1
with atoms now colored using the centrosymmetry parameter
approach. Consistent with the observations made parameter
by Kelchner et al.89 using the centrosymmetry, the �100-
�100 low-angle grain boundary is not visible in the figure. In
addition, dislocations emitted from the �111-�100 high
angle mismatch grain boundary seen in Fig. 7�a� are also not
seen here. From this observation, it can be concluded that
unit dislocations are emitted in PAl1. Similar observations
are also recorded for PAl2 and PAl3. Obviously, the potential
correctly predicts the formation of unit dislocations in nano-
crystalline Al, see Van Swygenhoven et al.90

VI. TENSILE DEFORMATION OF NANOCRYSTALLINE
Al+Fe2O3 COMPOSITES

Figure 8 shows the Young’s moduli and the flow strengths
in tension for all material samples analyzed as functions of
the average grain size. In both Figs. 8�a� and 8�b�, the H-P
relationships show a clear dependence on the volume frac-
tions of Al and Fe2O3. For the composite structures, the H-P
relationships lie between those of PAl and PHt. However, the
relationships for the composites cannot be simply obtained
from the relationships for PAl and PHt based on the rule of
mixture. This is primarily because the deformation in the
composites is strongly affected by the Al-Fe2O3 interfaces.
Depending on the relative orientations of the two phases at
an interface, the contribution of the interface to the strength
of a composite varies. Consequently, for larger average grain
sizes the strength of the composites might be more accu-
rately estimated based on the volume fractions of the indi-
vidual phases. This is clear from the results for the 7.2 nm
structures. Specifically, the strength for these structures can

b� flow strengths on grain size in all the nanocrystalline structures
nd �
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be more closely obtained from those of the pure Al phase and
pure Fe2O3 phase using the rule of mixture. This, however,
cannot be carried out for the structures with average grain
sizes of 4.7 nm and 3.9 nm. At these grain sizes, there is a
nonproportional increase in the defect and interfacial atoms.
Consequently, the interfacial and GB atoms have larger con-
tributions to the calculated strength values. This result points
out that it may be possible for nanocomposite structures to
have a critical grain size above which the strength of a nano-
composite can be calculated using the rule of mixture. Below
the critical grain size, the large volume of interfacial atoms
in the composites causes the rule of mixture to be ineffective.
The GB mismatch and the interfacial stresses also need to be
considered to form an appropriate relation, especially at
smaller grain sizes. The effects of GBs and interfaces dimin-
ish as the average grain size increases. For nanocrystalline
structures with grain sizes in the domain where dislocations
contribute significantly to the deformation mechanism, it
should be possible to neglect the effects associated with GB
mismatches and interfacial stresses.

Another important observation from Fig. 8 is that the
strength-grain-size relations are strongly dependent on the
volume fraction of Fe2O3. Structures with higher volume
fractions of Fe2O3 have steeper slopes in Fig. 8. This indi-
cates that electrostatic forces enhance GB sliding in struc-
tures with smaller grain sizes. In both plots, the relationship
between the strength and the square root of the grain size for
nanocrystalline Al is not linear. This is because high-angle
GBs play different roles in PAl2 and PAl3. The difference in
the average grain sizes for PAl2 and PAl3 is very small.
However, there is a big difference in the fraction of defect
and GB atoms and in the arrangement of the low-angle and
high-angle GBs. At the nanoscale grain sizes, interfaces and
GBs dominate the deformation mechanism. Accordingly, the
strength of a nanocrystalline structure is a function of the
arrangement of GBs �low-angle vs high-angle� and interfaces
in addition to the average grain size. Differences in the ar-
rangement of GBs preclude a linear strength and the square
root of average grain-size relationship. Similar trends in the
H-P relationship are reported by Schiøtz et al.71 for nano-
crystalline Cu, by Liao et al.80 for nanocrystalline Ni, and by

87
El-Sherik et al. through experiments on electroplated Ni

M. I. Baskes, Phys. Rev. B 46, 2727 �1992�.
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samples. In all the cases, the Young’s modulus values are
lower than those found for the corresponding macrocrystal-
line values. The flow strength values for the pure phases
approach the ideal shear strengths of the corresponding
single-crystalline systems.

VII. SUMMARY

An interatomic potential for carrying out MD simulations
of mechanical deformation in the fcc Al+�-Fe2O3 material
system is developed. This material system has a combination
of metallic, covalent, and ionic bonds. Accordingly, the
potential model includes an EAM functional, a Morse-type
pair function, and a second-order electrostatic interaction
functional. As far as we are aware, this potential is the first
multicomponent interatomic potential for this system. The
potential can be used in MD simulations of fcc Al, bcc Fe,
�-Fe2O3, and �-Al2O3 as well as for a system consisting of a
combination of these crystalline components. The potential is
fitted to the cohesive energy, the lattice constants, and the
elastic constants of all the component systems. The potential
predicts the surface and stacking fault energies of the com-
ponent systems in good agreement with experimental mea-
surements and first principles data. The predictions also com-
pare well with the predictions of other established potentials
in the literature. Application of the potential to the analyses
of the deformation of nanocrystalline Al, nanocrystalline
Fe2O3, and their composites reveals that the potential can be
used to obtain physical insights into the deformation of pure
Al and pure Fe2O3 phases as well as into the mechanical
deformation of Al+Fe2O3 nanocomposites.
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