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Abstract
In this paper, a semi-analytical method is developed to compute the elastic
stiffness of nanostructures such as nanowires, nanotubes and nanofilms.
Compared with existing methods for such computations, this new method is
more accurate and significantly reduces the computational time. It is based on
the Taylor series expansion of an interatomic potential about the relaxed state of
a nanostructure and implicitly accounts for the effects of shape, size and surface
of the nanostructures. To analyze the applicability and accuracy of this method,
as a case study, calculations are carried out to quantify the size dependence of
the elastic moduli of nanofilms and nanowires with [0 0 1], [1 1 0] and [1 1 1]
crystallographic growth orientations for groups 10 and 11 transition metals (Cu,
Ni, Pd and Ag). The results are in excellent agreement with data in the literature
and reveal consistent trends among the materials analyzed.

1. Introduction

Nanostructures such as nanowires, nanotubes and nanofilms exhibit unique mechanical,
electronic, optical and magnetic properties [1, 2] that do not exist in the case of classical bulk
structures. These nanostructured materials can play a major role in nanoelectromechanical
(NEMS) devices. The dependence of the thermo-mechanical responses of such nanostructures
on size is one unique aspect of their behavior [3–13]. The difference in behavior between
bulk structures and nanostructures stems partly from the large surface-to-volume ratio at the
nanoscale and therefore the effects of surfaces can no longer be neglected when the overall
behavior of these nanostructures is considered [1,2,14]. This size dependence at the nanoscale
represents both a challenge and an opportunity to regulate their properties for device integration.
The study and characterization of the mechanical behavior and the effective properties of
nanostructures are therefore important for the development of nanomaterials and for the design
of devices that utilize such nanostructures.

A variety of atomistic simulation methods have been used to study the effective elastic
properties of nanostructural elements. Based on density functional theory (DFT), first
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principles methods have been used to directly calculate the material properties of nanostructures
[15–17]. These calculations provide a deeper understanding of the physics by considering the
electronic structures of small clusters of atoms. Unfortunately, they are limited to the study
of small systems since the computational time associated with larger systems of atoms is
prohibitively long. On the other hand, molecular dynamics (MD) calculations allow for the
study of reasonably large systems and have been used as an alternative to ab initio calculations.
For example, MD simulations have been widely used to study the deformation mechanisms
of nanostructures [18–21]. The deformation analyses involve both quasi-static and dynamic
conditions. In the case of dynamic loading, it is often necessary to apply extremely high-strain
rates (on the order of 109 s−1) in order to reach strain levels of practical interest using existing
computers. However, such high-strain rates can alter the response of the material and introduce
variability in the characterization of the elastic constants. In the quasi-static framework,
deformations are achieved through a sequence of strain and relaxation steps that circumvent the
need for high-strain rate loading and its related problems. But computation is still limited by the
computational time required to relax the structure after each strain increment. Furthermore, in
both types of approaches (dynamic and quasi-static), the effective elastic moduli are computed
from the stress–strain curves obtained from the simulations. Therefore, multiple simulations
and different loading modes are required to obtain all elastic constants. For highly anisotropic
materials, these methods are tedious and lengthy. Additionally, computing the slopes of the
numerically interpolated stress–strain curves often leads to unacceptable levels of error.

Molecular statics (MS) represents another family of computational techniques used to
study the mechanical response of nanostructures. For example, Liang et al [22] employed
an MS approach to study the size-dependent elastic behavior of copper nanowires along the
[0 0 1], [1 1 0] and [1 1 1] crystallographic directions. They performed a strain meshing of the
nanostructure followed by an energy minimization for each deformation step. Subsequently,
the elastic constants are obtained by numerical interpolation of the energy density meshing
in the strain space. This method is also very tedious and time consuming since a refined
strain mesh is necessary in order to obtain accurate results. Another example of quasi-
static MS calculations consisting of applying a uniform uniaxial strain incrementally to the
relaxed nanowire configurations followed by energy minimization was employed by Diao
and coworkers [4] to study the effect of free surfaces and edges on the structure and elastic
properties of gold nanowires aligned in the [1 0 0] and [1 1 1] directions. For the particular case
of FCC metal nanowires considered in their work, this method requires moderate computational
resources. However, this method can be computationally demanding in studying inorganic
compound materials where the calculation of electrostatic contributions to the total energy
is computationally inefficient for nanostructures (for example, ZnO and GaN nanowires).
Another drawback of this method is that it can only evaluate elastic properties at 0 K.

As an alternative to the atomistic simulations, various approaches have also been developed
to extend continuum theories to nanostructured materials in order to incorporate surface
structure and its effects in the evaluation of the overall behavior of nanostructures [12, 23–25].
Specifically, several available thermodynamic models allow the size dependence of the elastic
response of nanostructures to be characterized through the inclusion of surface free energy
or surface stresses. In particular, using harmonic potentials and springs in a semi-continuum
model, Sun [24] predicted a decrease in the elastic modulus with the thickness of thin films.
Zhang [25] developed a theory linking interatomic potentials and the atomic structure of a
material to a constitutive model at the continuum level and applied it to the study of the
linear elastic modulus of single-wall carbon nanotubes. Dingreville et al [26] developed a
general framework for incorporating surface free energy into the continuum representation
of mechanical behavior. Based on this approach, they demonstrated that the overall elastic
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behavior of structural elements (such as particles, wires and films) is size dependent and
observed that the self-equilibrium state of a particle is different from that of an infinite
crystal lattice and attributed the difference primarily to the effect of surface stresses. These
methods prove to be powerful analytical tools and give a deeper insight of the physical
phenomenon associated with nanostructures. Nevertheless, they require the knowledge of
the material properties such as bulk and surface elastic constants, which, in turn, generally
necessitate atomistic calculations for their evaluation. Many approaches have been developed
to experimentally measure [27,28] or computationally evaluate the required surface properties
such as surface energy, surface stress and surface stiffness. In particular, first principles, MD
and MS calculations have been used, often along with analytical or semi-analytical models.
For example, as early as 1986 Ackland and Finnis [29] calculated the tensile surface stresses
in body-centered cubic (BCC) and face-centered cubic (FCC) metals using simple empirical
N-body potentials. Their result was in satisfactory agreement with available experimental
data. Later on, researchers such as Daw and co-workers [30–32], or Mishin and coworkers
[33–35], successfully evaluated the ability of the embedded-atom method (EAM) potentials
to predict energies and stability of non-equilibrium structures. Recently, Dingreville and
Qu [36] developed a semi-analytical method and successfully used it to compute the intrinsic
surface energy density, intrinsic surface stress and surface stiffness of crystalline materials.
In addition to these prerequisites, the implementations of these analytical methods can be
complicated when dealing with nanostructures having more complex shapes than wires and thin
films.

In summary, most of the existing methods for computing the elastic properties of
nanostructural elements are rather complicated to implement and are computationally intensive.
The semi-analytical method proposed in this work overcomes most of the aforementioned
disadvantages. This approach allows the effective elastic properties of nanostructures to be
expressed analytically in terms of the interatomic potential of the material and the equilibrium
(or relaxed) positions of the atoms. Once the initial assembly is created and equilibrated
no further atomistic simulations are necessary in order to obtain the elastic properties. This
method is written in a general form so that, firstly, it admits a generic interatomic potential
and, therefore, it can be used for a wide range of materials and, secondly, the effects of
the size and shape of the nanostructure are implicitly considered through the equilibrated
geometry of the nanostructure. Compared with the existing methods, the method presented here
significantly reduces the computational time (94% reduction as compared with the MD/MS
simulation schemes detailed above) since it only requires one static relaxation calculation.
It also avoids potential sources of errors in the results obtained by directly computing the
elastic constants and obviating any numerical interpolation or thermodynamics ensemble
averaging.

In what follows, we first derive the analytical expressions for effective elastic properties
and extend the methodology to the characterization of the size dependence of the elastic
moduli of thin films and nanowires grown along the [0 0 1], [1 1 0] and [1 1 1] crystallographic
directions for group 10–11 transition metals (Cu, Ni, Pd and Ag) using EAM potentials.

2. Method for computing the effective elastic constants of nanostructures

This section outlines the semi-analytical method for evaluating the effective elastic properties
of nanostructures measured at the relaxed configuration. The interatomic potential and the
computational framework used in the application of this method to nanowires and nanofilms
are also discussed.
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2.1. Derivation of the method

A generic interatomic potential function E(n) for atom n in its self-equilibrium position of a
crystalline material can be written as

E(n) = E0 +
∑
m �=n

E1(r̂
nm) +

1

2!

∑
m �=n

∑
p �=n

E2(r̂
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where

r̂mn =
√

(r̂mn
1 )2 + (r̂mn

2 )2 + (r̂mn
3 )2 (2)

is the scalar distance between atoms m and n in the relaxed configuration. Note that the generic
form in equation (1) includes pair potentials such as the Lennard-Jones potential as well as
multi-body potentials such as the EAM potential used in the numerical examples in this paper.
The vector rmn is the position vector between atoms m and n in a uniform strain field measured
from the relaxed configuration of the nanostructure. The strain tensor relative to the relaxed
configuration here is assumed to be the same for all atoms and can be defined through

rmn
i − r̂mn

i = η̃mn
ij r̂mn

j = η̃ij r̂
mn
j . (3)

Additional deformation for atoms near the surfaces is therefore assumed to be uniform when
the nanostructure is subsequently deformed from its relaxed state. The nine independent
components of the deformation gradient η̃ij can now be decomposed into six symmetric
parameters corresponding to the pure deformation

ε̃ij = 1
2 (η̃ij + η̃j i) (4)

and three anti-symmetric parameters corresponding to the pure rotation

γij = 1
2 (η̃ij − η̃j i). (5)

In this work, only the pure deformation ε̃ij is considered and the rotation γij is neglected
in the formulation since only axial behaviors are considered here. It then follows from the
previous work by Johnson [37, 38] that, for a uniform and homogeneous deformation, the
Taylor expansion of (1) with respect to the relaxed configuration can be written as

E(n) = A(n) + A
(n)
ij ε̃ij + 1

2A
(n)
ijkl ε̃ij ε̃kl, (6)

where the uniform strain field ε̃ij is measured from the equilibrium (relaxed) state of the
nanostructure and the coefficients A(n), A

(n)
ij and A

(n)
ijkl are related to the energy of atom n via

A(n) = E(n)|rmn=r̂mn , (7)
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Here, the symbol 〈i, j〉 in the subscript indicates the symmetric part of the base tensor, i.e.

[ui,j ]〈i,j〉 = 1
2 [ui,j + uj,i]. (10)
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Note that, once the interatomic potential E(n) is given and the relaxed (equilibrium) position
of each atom in the system is known, the coefficients A(n), A

(n)
ij and A

(n)
ijkl can be computed

analytically.
For any given atom belonging to the nanostructure (either on the surface or in the core),

the local elastic stiffness tensor can then be defined as

C
(n)
ijkl = 1

�(n)
A

(n)
ijkl, (11)

where �(n) is the volume of the Voronoi polyhedron associated with atom n. The atomic-level
elastic stiffness tensor C

(n)
ijkl can be interpreted as a description of the homogeneous elastic

response at individual atomic sites. We can now consider the entire structure with volume �

that contains N atoms. When subjected to a uniform strain field εij , the elastic stiffness tensor
of the nanostructure measured at the relaxed state is thus given by
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Note that under the above assumptions, this formula generally gives analytical expressions of
the Voigt upper bound of the effective stiffness tensor of the nanostructure considered at the
state of self-equilibrium. In the particular situation of thin films and nanowires grown along
the basal crystallographic directions, as is the case in this paper, it has been verified that the
transverse relaxation is linear and therefore the above equation gives the exact expression of
the effective stiffness tensor of the nanostructure considered at the state of self-equilibrium.

In the particular case of nanowires, it is convenient to consider the uniaxial elastic modulus
defined as

EX3 = EL = C33 +
C11C

2
23 + C22C

2
13 − 2C12C13C23

C2
12 − C11C22

, (13)

where Cij are the contracted forms of the effective stiffness tensor Cijkl under the Voigt
notations. The general rule for contracting the indices is (11) → (1), (22) → (2), (33) → (3),
(12) → (6), (13) → (5), (23) → (4). For example, C1122 = C12.

Similarly, for thin films, quantities of interest are the two in-plane unidirectional elastic
moduli

EX1 = E1 = C11 +
C33C

2
12 + C22C

2
13 − 2C12C13C23

C2
23 − C22C33

, (14)

EX2 = E2 = C22 +
C33C

2
12 + C11C

2
23 − 2C12C13C23

C2
13 − C11C33

(15)

and the biaxial elastic modulus

Y = 1

2

[
C11 + C22 + 2C12 − (C13 + C23)

2

C33

]
. (16)

Note that the elastic constants are defined with respect to the relaxed configuration of the
nanostructures. The method described here is not limited to wires and films. It can be used
to deal with nanostructures of more complex shapes and sizes. Obviously, this approach
implicitly accounts for the surface effects that influence the properties of the structure. It is
therefore important to choose an appropriate interatomic potential function in order to have an
accurate description of the properties of the material studied.
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2.2. Interatomic potential

The formulation developed here is very general in the sense that it applies to any interatomic
potential as long as a functional form for the potential exists. However, it should be noted
that the predictions of this method are as accurate as the potential itself, as is the case with
all the methods outlined above. We have used an EAM potential developed by Daw and
Baskes [31, 32] as a study case in this paper for numerical evaluation since it is a very
efficient technique for modeling realistic metallic cohesion [31, 32, 39]. Furthermore, for
nanostructures, the physical nature of the surface atoms is different from that in the bulk,
and deviations from the bulk elastic behavior in small scale systems can be considered as
manifestations of the Gibbs–Thomson effect. It has been shown in a previous paper by the
authors [36] that the EAM potential used in this work adequately predicts surface properties
such as surface energy and surface stress. Hence, it ensures that surface properties are being
modeled correctly so that their influences on small sized solids are appropriately taken into
account when determining the effect of surfaces on the elastic properties. This many-body
potential also has the advantage [40] of keeping the computations scaling on the order of
N whereas more complex many-body potentials are on the order of N3 which renders the
numerical interpolation of the potential lengthier.

In this framework, the total energy of an atom is expressed as the sum of contributions
from the two-body interactions and from an embedding energy, i.e.

En = EG
n + EV

n = Gn(ρ̄n) + 1
2

∑
m �=n

V (rmn), (17)

where EG
n and EV

n represent, respectively, the embedding energy of atom n and the pair
interaction potential between atoms m and n. ρ̄n is the local background electron density
induced at the position of atom n by other atoms in the system calculated as a linear
superposition of the contributions from those atoms. These functions have been determined
empirically by fitting the predicted results to experimental values or values obtained using ab
initio techniques. These include physical properties such as the equilibrium lattice parameter,
cohesive energy, sublimation energy, elastic constants C11, C12 and C44 and vacancy-formation
energy. The explicit expressions of equations (7)–(9) for the EAM potentials used are derived
in the appendix.

In this paper, the contribution of kinetic energy or temperature is neglected. The free energy
involves contributions from both the internal energy of the crystal and the product of the entropy
and absolute temperature. The latter contribution vanishes at 0 K. The atomic rearrangements
are regular and smooth enough such that the configurational and thermal sources of entropy
can be ignored. In fact, it has been proven that in the case of nanowires and thin films the elastic
modulus decreases approximately linearly with increasing temperature [41,42], with a decrease
of up to 15% over a temperature range of 0–400 K for copper, for example. Therefore, the
internal energy at 0 K constitutes a fair measure [43] of the elastic modulus at low temperatures
and can be simply interpolated to a finite temperature by a linear regression. The evaluation of
the elastic modulus at a higher temperature could be achieved by computing the relaxed state
of the structure at the desired temperature and subsequently used the proposed method in this
paper to calculate its effective stiffness.

2.3. Computational framework

The framework developed earlier is used to study the size dependence of the effective elastic
constants of [1 0 0]-, [1 1 0]- and [1 1 1]-oriented FCC nanofilms and nanowires with square
cross sections of groups 10–11 transition metals. Figure 1 shows the orientations of the lateral
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Figure 1. Schematic illustration of the nanostructural elements analyzed and their crystallographic
orientations. PBCs are applied in the longitudinal directions (X3 axis in the case of nanowires, X1
and X2 axes in the case of nanofilms). The transversal directions are kept traction free.

(This figure is in colour only in the electronic version)

surfaces of these nanostructures. The full set of effective elastic constants for Cu, Ni, Ag and
Pd nanowires and thin films are calculated.

Nanostructures of different sizes are obtained by considering a top down fabrication
approach [44] by ‘cutting’ them from bulk crystals in the desired crystallographic orientations.
Periodic boundary conditions (PBCs) are applied along the longitudinal direction and the
lateral surfaces are kept free. For nanowires, PBCs are applied along the X3 axis, as illustrated
in figure 1. For nanofilms, PBCs are applied in the X1 and X2 directions. It is found that
computational cell lengths of at least 6 nm for wires and in-plane widths of at least 4 nm for
films are needed to ensure that the results are independent of the choices of computational cell
sizes. Therefore, a cell length of 20 nm is used for all the nanowires and a cross-sectional size
of 8 nm × 8 nm is used for all films.

The atomic interactions are calculated up to the third nearest neighbor by truncating the
EAM potential at the appropriate distance. The reduced coordination of atoms near free
surfaces induces a redistribution of electronic charges which alters the binding situation.
Consequently, atoms near surfaces relax or move away from their perfect lattice positions and,
as a result, their energy is different from the values in bulk. A non-linear conjugate gradient
method is used to minimize the energy of the system and to obtain the relaxed configuration.
Contractions in the longitudinal and transverse directions are observed upon relaxation. This
self-equilibrium state is characterized by the relaxation-induced strain field ε̂ij and the average
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stress over the entire structure which is equal to zero since the structure is in a free-standing
state.

The effective elastic moduli of thin films and wires of various thicknesses obtained from
the semi-analytical model (labeled as ‘atomistic’ in subsequent graphs) were compared with
those calculated using a continuum model developed by Dingreville et al [26] (labeled as
‘model’ in subsequent graphs). This continuum model proves to give accurate estimations of
the elastic constants of diverse nanostructures and compares well with other existing techniques
evaluating those constants. In this continuum model, the relaxed state of the nanostructure is
characterized by the strain tensor, ε̂ij , that describes the deformation from the perfect crystal
lattice to the self-equilibrium state of the particle and can be analytically written as

ε̂ij = − 1

d
Mijklτkl, (18)

where Mijkl = C−1
ijkl is the compliance tensor of the bulk crystal, τij is the intrinsic surface

stress tensor and d is the characteristic length of the particle. The effective modulus tensor of
the particle evaluated at the state of self-equilibrium was expressed as

C̄ijkl = C+
ijkl

1

a
(Qijkl − C

(3)
ijklmnMmnpqτpq). (19)

The fourth order tensor Qijkl can be viewed as a surface rigidity tensor. It represents the
combined effect of surface stiffness and surface geometry. C

(3)
ijklmnrepresents the third order

elastic constants of the perfect crystal lattice. These two equations were used to compare with
the results obtained through the method presented in this paper.

3. Results for thin films and nanowires

Three different crystallographic orientations in four FCC materials (Cu, Ni, Ag and Pd) are
considered. The discussion here focuses on the elastic properties of these homologous materials
and the underlying trends in the effects of surface and crystallographic orientations. The values
for cubic (second order) and third order elastic constants of the single crystals and the surface
properties required for the continuum model are taken from Dingreville [36,45] and are listed
in tables1 and 2. All the results discussed in this paper are for unreconstructed surfaces.
As reported by several researchers [4, 8, 9], for certain orientations and materials, phase
transformation and surface and structure reconstruction can occur when the characteristic size
is sufficiently small. Examples include [1 0 0]-oriented gold nanowires with cross-sectional
areas smaller than 1.83 nm × 1.83 nm. The sizes considered in this paper are larger than the
critical sizes associated with the lattice reorientation phenomenon; therefore, there is no need
to consider issues related to structural changes.

Figure 2 shows the self-equilibrium strains during the initial relaxation of nickel nanowires
as a function of wire thickness. Results computed via equation (18) from the continuum model
developed by Dingreville et al [26] are also shown. For the three crystallographic orientations
and for all the materials studied, the self-equilibrium strains obtained from the atomistic
calculations agree well with the calculated values using the continuum model. As seen from
the continuum and semi-analytical model results, we observe longitudinal contractions and
lateral expansions that increase as the size of the wires decreases. For a given wire size, the
axial contractions for the [1 1 0] and [1 1 1] directions have similar magnitudes and they are
furthermore larger than those of [1 0 0] wires. For example, for a 2 nm wire, the equilibrium
strain is approximately −1% for [1 1 0] and [1 1 1] wires while it is approximately −2% for
[1 0 0] wires. Table 1 shows that for all the metals studied, the intrinsic surface stresses �

(1)
11 and

�
(1)
22 of the (1 0 0) surfaces are greater than the surface stresses of the two other surfaces, while
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Table 1. Elastic properties of low-index surfaces of several FCC metals (obtained using the method
of Dingreville and Qu [36]): unit: J m−2.

Ni Cu Pd Ag

(1 1 1) �
(1)
11 0.457 0.866 1.848 0.636

�
(2)
1111 6.526 2.054 −2.914 0.888

�
(2)
1122 3.986 1.086 −1.014 1.194

�
(2)
1212 −1.188 −1.071 −2.354 −1.173

(1 0 0) �
(1)
11 1.321 1.396 1.981 0.816

�
(2)
1111 −0.865 −0.712 −2.360 −1.245

�
(2)
1122 10.722 5.914 2.611 3.343

�
(2)
1212 −0.927 −0.992 −3.250 −1.666

(1 1 0) �
(1)
11 [001] 1.054 1.126 1.230 0.492

�
(1)
22 [11̄0] 0.706 0.993 1.656 0.684

�
(2)
1111 −13.031 −7.798 −4.775 −5.510

�
(2)
2222 0.950 −2.263 −6.654 −2.246

�
(2)
1122 −5.045 −3.600 −2.086 −2.332

�
(2)
1212 −7.827 −4.436 −3.378 −3.296

Table 2. Elastic properties of FCC metals (obtained using the method of Dingreville [45]). Unit:
100 GPa.

Ni Cu Pd Ag

C11 2.329 372 1.671 006 1.982 86 1.288 681
C12 1.540 882 1.240 452 1.703 933 0.908 729
C44 1.274 68 0.763 766 0.579 613 0.566 601
C111 −10.1788 −7.374 77 −11.295 −6.630 15
C112 −7.897 58 −5.757 54 −8.816 75 −4.976 39
C123 2.545 034 0.322 111 −3.440 31 0.118 789
C144 0.724 419 0.283 855 −0.669 12 −0.056 54
C155 −9.213 24 −5.188 77 −4.622 39 −4.632 29
C456 1.335 939 0.885 549 0.693 845 0.530 193

they are similar for the (1 1 1) and (1 1 0) surfaces. Due to higher moduli in the [1 1 1] and
[1 1 0] directions and smaller intrinsic surface stresses on the lateral surfaces, this results in the
fact that the relaxation strain is smaller for the [1 1 0] and [1 1 1] nanowires than for the [1 0 0]
wires at a given thickness. Clearly, the intrinsic residual surface stresses directly influence the
magnitude of the self-equilibrium strain. A similar observation is also made for the nanofilms.
This observation is confirmed by equation (18) and by previously reported results by Liang
et al [22] and Zhou and Huang [46].

The effective unidirectional and biaxial moduli for single crystal Ni wires and Cu films
of various thicknesses are plotted in figures 3 and 4, respectively. For Ni wires, the axial
modulus for the [1 1 0] orientation increases as the wire diameter decreases, while an opposite
trend is seen for wires in the [1 0 0] orientation. For a wire size of 2 nm, the axial modulus for
the [1 0 0] orientation is approximately 15% smaller than its bulk counterpart (we calculated
a reduction of up to 35% compared with the bulk value in the case of 2 nm Cu nanowires),
while in the case of the wire in the [1 1 0] orientation, the axial modulus for a 2 nm wire is
approximately 23% higher than the value in the bulk. As seen from figure 3, as the wire size
is decreased from 8 to 2 nm, the axial elastic modulus decreases by 28% for [1 0 0] wires and
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Figure 2. Self-equilibrium strain of nickel nanowires as a function of wire thickness for different
crystallographic orientations calculated using the semi-analytical method (labeled as ‘atomistic’)
with an EAM potential. A comparison with the results obtained using the method of Dingreville
and Qu [26] (labeled as ‘model’) is also shown.

Figure 3. Effective elastic modulus in the longitudinal direction of copper nanowires as a function
of wire thickness calculated using the semi-analytical method (labeled as ‘atomistic’) with an EAM
potential. A comparison with the results obtained using the method of Dingreville and Qu [26]
(labeled as ‘model’) is also shown.

by only 2% for [1 1 1] wires, while it increases by 15% for [1 1 0] wires. This can simply
be explained through equation (19). It is clear from this expression that the two material
properties influencing the softening or stiffening of nanostructures are (i) the surface elasticity
represented through the tensor Qijkl (which is a function of the surface elastic behavior and
the shape of the nanostructural element) and (ii) the non-linear behavior of the core of the
nanostructure through the third elastic constants C

(3)
ijklmn. For all orientations and materials

studied the surface elasticity always contributes to the softening of the wires as compared
with their respective bulk values, while the non-linear elastic behavior of the core of the wire
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Figure 4. Effective biaxial elastic modulus of copper nanofilms as a function of film thickness
calculated using the semi-analytical method (labeled as ‘atomistic’) with an EAM potential. A
comparison with the results obtained using the method of Dingreville and Qu [26] (labeled as
‘model’) is also shown.

contributes to the size-dependent softening of the wire in the case of the [1 0 0] and [1 1 1]
orientations and contributes to the size-dependent stiffening of the wire in the case of the
[1 1 0] orientation. Similar trends are seen for the uniaxial modulus of Cu films since the films
can be viewed as an array of wires placed side by side.

In the case of the biaxial elastic modulus of Cu thin films, as seen in figure 4, we observe
opposite trends as compared with the uniaxial elastic modulus of the nanowires. Specifically,
for a 2 nm film, the biaxial modulus for the (1 0 0) orientation is almost 33% higher than its
bulk value. We can see from figure 4 that when the thickness of the film is reduced from 8
to 2 nm, the biaxial elastic modulus increases by 22% and 4% with respect to its bulk value
for the (1 0 0) and (1 1 1) films, respectively, while it decreases by 4% for the (1 1 0) wires.
Similar results and trends obtained by MS calculations and strain meshing are confirmed by
earlier works of Liang et al [22] and Zhou and Huang [46].

Another interesting observation is the similarity between the size dependences of the
uniaxial elastic modulus for nanowires in the [1 0 0] direction and the uniaxial elastic modulus
in the (0 0 1) direction of the [1 1 0] films (figure 5). This can be qualitatively explained by
considering the surface attributes for the (1 1 0) plane. In particular, the trough and ridge
structure of the (1 1 0) surface results in atoms along the rows of atoms along the [1 1̄ 0]
direction being separated by a relatively wide trough. The nearest neighbors of the atoms in a
row are other atoms in the same row and atoms in the layers underneath it. The only nearest
neighbor bonds of the surface layers atoms that have a component transverse to the [1 1̄ 0]
row are those that connect them to the atoms in the second layer resulting in a higher uniaxial
elastic modulus in the [1 1̄ 0] direction than in the [1 0 0].

It is also interesting to note the similarity of the size dependence of the elastic response
of nanocrystalline materials with the nanoparticles studied in this paper by the same order of
magnitude. Indeed, previous works, both experimental [47–49] and computational [50–53],
showed that the effective modulus of polycrystalline materials is also inversely proportional
to the grain size. For example, some works reported a reduction in the elastic modulus by as
much as 30% [49,54] for nanocrystalline materials. Careful molecular dynamic simulations of
copper polycrystal [53] have shown that Young’s modulus is indeed reduced by over 25% when

11



Modelling Simul. Mater. Sci. Eng. 16 (2008) 025002 R Dingreville et al

Figure 5. Effective uniaxial elastic modulus of nickel nanofilms as a function of the film thickness
calculated using the semi-analytical method (labeled as ‘atomistic’) with an EAM potential. A
comparison with the results obtained using the method of Dingreville and Qu [26] (labeled as
‘model’) is also shown.

the grain size is reduced to 5 nm, even when the polycrystal is fully dense. A similar reduction
is seen in simulations for other materials [50,52]. It is therefore perfectly admissible to consider
that the present method could capture the size dependence of nanocrystalline materials.

Before closing this section, we show in figure 6 the results for all the materials studied and
compare the uniaxial elastic modulus for nanowires and uniaxial and biaxial elastic moduli
for thin films as a function of their characteristic sizes. The elastic moduli decreases for the
[1 0 0] wires, increases for the [1 1 0] wires and remains essentially constant for the [1 1 1]
wires as the cross-sectional size is decreased (figure 6(a)). For thin films (figure 6(b)), the
biaxial elastic modulus shows exactly the opposite trend to those seen in the nanowires for all
the materials studied. The size dependence trends observed for the uniaxial moduli of thin
films grown in various orientations are also consistent among the materials analyzed. Such a
consistency in the elastic response is expected since the surface and bulk properties are quite
similar for the materials in this homologous series. It is worth mentioning that, among the
transition metals studied, palladium is the material most susceptible to being affected by the
size dependence at the nanoscale. Although discussions on the effect of size on the unusual
mechanical properties of metal nanowires have previously been reported [3, 4, 22, 46], it is
believed that such a complete set of elastic properties’ data for this variety of materials is new
to the literature.

4. Conclusions

A semi-analytical method for computing the elastic properties of nanostructural elements has
been developed. This method is semi-analytical in that it expresses the elastic properties
explicitly in terms of the interatomic potential. It requires only one MS calculation to obtain
the self-equilibrium state (relaxed state) of the nanostructural elements. Compared with
existing methods, this method has several advantages including (i) it does not require extensive
computational resources (only one MS calculation and therefore ∼90% reduction in the CPU
time as compared with full atomistic techniques), (ii) it directly gives the full set of elastic
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Figure 6. Elastic constants of nanowires and nanofilms for Cu, Ni, Ag and Pd; (a) Effective
longitudinal elastic modulus of nanowires, (b) effective biaxial elastic modulus of nanofilms and (c)
effective uniaxial elastic modulus of nanofilms, as functions of thickness for various orientations and
materials calculated using the semi-analytical method (labeled as ‘atomistic’) with EAM potentials.
A comparison with results obtained using the method of Dingreville and Qu [26] (labeled as ‘model’)
is also shown.

properties, (iii) it is very general and applies to any interatomic potential, although an EAM
potential was used in this paper in the numerical examples, and (iv) it implicitly accounts
for the effects of the shape and size of the nanostructure studied. Nanostructures of different
geometric shapes and sizes such as nanowires, nanofilms and nanoparticles can be studied
using this method in a uniform manner without modifications to the formulation. In addition
to its efficiency and simplicity, this method yields results that are in excellent agreement with
those measured from experiments and predicted by other atomistic methods.

Using the method developed in this paper, the size dependence of the elastic properties of
nanowires and nanofilms of Cu, Ni, Ag and Pd with [1 1 1], [1 0 0] and [1 1 0] crystallographic
orientations has been investigated. The results show that the size, orientation and shape of the
nanostructures influence elastic constants in different manners. Specifically, for the materials
studied, decreasing the characteristic size of the nanowires from 8 to 2 nm results in decreases
of the elastic modulus of up to 80% for the [1 0 0] oriented wires and up to 8% for the [1 1 1]
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oriented wires and increases between 15% and 37% for the [1 1 0] oriented wires. In the case
of nanofilms, as the film thickness is decreased from 8 to 2 nm, the biaxial modulus can change
by up to 50%, 7% and −5% for the [1 0 0], [1 1 1] and [1 1 0] films, respectively. Among the
materials in this homologous series analyzed, similar trends in elastic properties are observed,
consistent with what is reported in the literature.
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Appendix

It follows from (7)–(9) that, for the EAM potential given by (17),

A(n) = G
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In the above equations, prime and double primes on a function indicate the first and
second derivatives, respectively, with respect to the argument of the function. For example,
V ′′(r) = d2V /dr2.
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