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A model is developed to evaluate the thermal conductivity of semiconducting com-
pounds as a function of their atomistic structures during phase transformations in-
duced by mechanical loading. The approach uses atomistic configurational informa-
tion and interatomic interactions as input. The harmonic and anharmonic behaviors
of phonons are captured through force constants which are sensitive to structural
changes. The calculations focus on changes in thermal conductivity of GaN nanowires
in response to deformation and phase transformation. Results show that the model
yields results consistent with data obtained using the Green-Kubo method and is
50 times more efficient than calculations based on molecular dynamics. C© 2013 Au-
thor(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4816788]

I. INTRODUCTION

For many nanostructures, external loading can lead to structural transitions, resulting in changes
in mechanical, thermal, electrical, and optical properties. For example, metallic nanowires can un-
dergo lattice reorientations under uniaxial tensile loading.1 Phase transformations have also been
observed in ZnO and GaN nanowires under loading along different directions.2–4 In particular, such
structural changes can have significant impact on thermal transport which is an important consid-
eration in the design of nanodevices that use nanomaterials. Molecular dynamics (MD) simulations
are widely used to study the mechanical behavior of materials, including structural changes under
loading. The thermal behaviors of semiconducting nanostructures have been studied using MD,5–10

density functional perturbation theory (DFPT)11–16 and models based on the Boltzmann transport
equation (BTE).17–21 Among these methods, the MD method is often used for the calculation of
thermal conductivity in nanowires because relatively large numbers of atoms (>5000) can be con-
sidered to capture both structural changes and associated thermal response changes simultaneously.
Models based on the BTE are not usually used because they do not distinctly consider the effects of
mechanical strain and phase transformations.

In our previous work,22, 23 the thermomechanical behaviors of [0001]-oriented GaN nanowires
are investigated using MD simulations. Phase transformations are observed during tensile loading
and unloading. Specifically as shown in Fig. 1, the wurtzite (WZ) structure of unstressed nanowires
transforms into a tetragonal structure (TS) under tensile loading along the [0001] direction. Upon
unloading, a reverse transformation from TS to WZ occurs. Transitional states are observed during
the reverse transformation. The thermal responses of the deformed GaN nanowires are analyzed
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FIG. 1. A schematic view of phase transformation of [0001]-oriented GaN nanowires during tensile loading and unloading.

using the equilibrium Green-Kubo method. The thermal conductivity of the nanowires is found to be
dependent on the strain and the crystalline structure state during the tensile loading and unloading.

In order to evaluate the thermal conductivity using the Green-Kubo approach, the heat flux
should be calculated over periods of at least 500 ps. This usually corresponds to one million time
steps in MD simulations.24, 25 In contrast, to resolve a mechanical loading step, 20,000 time steps
are sufficient to reach equilibrium in stress, temperature, and energy and capture the corresponding
mechanical response. For Cu nanowires1 and ZnO nanowires,3 which show a lattice reorientation and
the phase transformation respectively under tensile loading, the equilibrium times for each loading
increment are less than 20,000 time steps. To put it in perspective, the computational cost for the
calculation of thermal conductivity is fifty times that for the mechanical response. This imbalance
makes coupled thermal-mechanical simulations quite inefficient.

Bhowmick and Shenoy26 presented a theoretical model for the dependence of thermal conduc-
tivity on mechanical strain. This model allows the thermal conductivity of solids to be calculated
using empirical atomistic potentials. This model does not account for the effect of phase transforma-
tions because the model is based on the effect of strain only. Thermal conductivity predicted by this
model simply decreases with mechanical strain. This trend is similar to the result for GaN nanowires
reported by us previously.23 However, the dependence of thermal conductivity on the crystalline
structures cannot be described properly. This model fails to explain the thermomechanical behaviors
of [0001]-oriented GaN nanowires in Ref. 23 because thermal conductivities are different at the
same strain in the loading and unloading processes due to the difference in crystal structures. This
model is valid only for materials with constant structures. Here, we propose a new approach to allow
the dependence of thermal conductivity on both strain and crystal structure of deformed nanowires
to be accounted for. The focus is on thermal response changes resulting from both mechanical de-
formation and structural transformation. The account of the effect of structural changes on thermal
conductivity is through the use of deformed atomistic configurations obtained from separate MD
calculations at different stages of deformation. Force constants are calculated first using the results
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FIG. 2. Schematic illustration of the approach for predicting thermal conductivity of deformed structures using atomistic
configurations from MD simulations and an atomistic potential.

of MD simulations of mechanical response. We then compute changes in thermal conductivity in
response to deformation and phase transformation.

II. ANALYTICAL APPROACH

In the Green-Kubo approach, the thermal conductivity is evaluated using the ensemble average
of the autocorrelation of heat flux. The calculation of heat flux concerns the positions, velocities,
and forces of atoms. In MD simulations, such atomistic quantities are determined by the atomistic
potential. This means that the atomistic configuration and potential are essential factors for the
evaluation of thermal conductivity. As illustrated in Fig. 2, the new model uses atomistic configu-
rational information and interatomic potential to calculate the thermal conductivity as a function of
material structure. The atomistic configuration is obtained from MD simulations used to calculate
the mechanical properties.

The potential energy � of the material can be expanded as a Taylor series in powers of atomic
displacement u relative to the current macroscopic equilibrium state such that

� = �0 +
∑
i,α

∂�

∂ui,α

∣∣∣∣
u=0

ui,α + 1

2

∑
i, j,α,β

∂2�

∂ui,α∂u j,β

∣∣∣∣
u=0

ui,αu j,β

+ 1

3!

∑
i, j,k,α,β,γ

∂3�

∂ui,α∂u j,β∂uk,γ

∣∣∣∣
u=0

ui,αu j,βuk,γ + · · · , (1)

where �0 is the potential energy associated with the macroscopic equilibrium state at each stage of
deformation; the i , j , and k sums are over all the atoms in the system; the α, β, and γ sums are over
the x-, y-, and z-directions, respectively; and ui,α is the α-th component of the displacement vector
of atom i . In the harmonic approximation,26 the first derivative of the potential energy with respect
to atomic displacement is zero because the energy is the lowest at equilibrium. The third- and higher
order terms are truncated. Following the approximation, the above expression is rewritten as

� − �0 ≈ 1

2

∑
i, j,α,β

∂2�

∂ui,α∂u j,β

∣∣∣∣
0

ui,αu j,β . (2)
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Under this approximation, the equation of motion can be written as

mi üi,α = −
∑
j,β

[
∂2�

∂ui,α∂u j,β

∣∣∣∣
0

· u j,β

]
, (3)

where mi is the mass of i-th atom. The displacement of atom i can be written as a superposition of
the normal modes of the system, i.e.,27

ui = 1√
mi

∑
k,v

e (k, v) exp {i [k · ri − ω (k, v) t]}, (4)

where k is the wave vector, v is the mode for the wave vector, e (k, v) is the mode eigen-vector, ri is
the position of atom i , ω (k, v) is the angular frequency, and t is time. Normal mode coordinate Q
is obtained by using the inverse Fourier transformation of the displacement as27

Q (k, v) = 1√
N

∑
i

√
mi exp (−ik · ri ) e (k, v) · ui , (5)

where N is number of atoms in the system. The normal mode system is equivalent to the system of
harmonic oscillators. The frequency of the system ω is obtained as

ω2 = ∂2�

∂ Q2
=

∑
i, j,α,β

∂2�

∂ui,α∂u j,β

∂ui,α

∂ Q

∂u j,β

∂ Q
. (6)

In this work, the potential energy � can be regarded as a summation of the interatomic energy φ
(
ri j

)
between atom i and j , i.e.,

� =
∑
i, j

φ
(
ri j

)
, (7)

because the atomistic potentials considered in this work are pairwise. From (6) and (7), the frequency
is dependent on the second-order force constant V2 such that

ω2˜
∑
i, j

∂2φ
(
ri j

)
∂r2

i j

ri j,α

ri j

ri j,β

ri j
= V2. (8)

The harmonic scattering rate of phonons due to mass disorder is dependent on the frequency.15, 28

To reflect the effect of structural deformation, V2 is assumed to be dominant for changes in the
harmonic scattering rate and the frequency of phonons. The scattering rate is dependent on V2 such
that

1

τharmonic
= π

2
gω2 D (ω) = f (ω) = f (V2) , (9)

where g is a measure of the mass disorder and D (ω) is the phonon density of states.15, 28 In the
above relation, τharmonic can be reduced to be a function of V2 because τharmonic is a function of the
phonon frequency. The anharmonicity of phonon behavior mostly originates from the third-order
term in (1). The anharmonic scattering rate is computed by considering the three-phonon scattering
processes in the single-mode relaxation time approximation11, 15, 29 via

1

τanharmonic
= π

∑
q ′, j ′, j ′′

∣∣V (
j,−q; j ′, q ′; j ′′, q ′′)∣∣2

× [(1+n j ′q ′ +n j ′′q ′′ )δ(ω j ′q ′ +ω j ′′q ′′ −ω j,−q )+2(n j ′′q ′′ −n j ′q ′ )δ(ω j ′q ′ −ω j ′′q ′′ −ω j,−q )],

(10)

where V
(

j,−q; j ′, q ′; j ′′, q ′′) are the three-phonon coupling matrix elements,29 n is the Bose-
Einstein phonon population, q is the phonon momentum, and j is the branch index. The formula
for the anharmonic scattering rate contains terms of phonon frequencies and three-phonon coupling
matrix elements, which are related to the third-order interatomic force constant.14, 16, 29 For systems
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described by pairwise potentials, the third-order force constant V3 is obtained from the third-order
derivative of the potential energy in a way similar to the manner in which V2 is obtained, i.e.,

V3 =
∑
i, j

∂3φ
(
ri j

)
∂r3

i j

ri j,α

ri j

ri j,β

ri j

ri j,γ

ri j
. (11)

The anharmonic scattering rate is dependent on V2 and V3 through

1

τanharmonic
= f (ω, V ) = f (V2, V3) . (12)

From the kinetic theory of heat carrier, the thermal conductivity can be evaluated using the
phonon frequency and scattering rates. The phonon frequency ω is dependent on V2 as shown in (8),
and the scattering rates are functions of V2 and V3 in (9) and (12). Since V2 and V3 are considered to
be dominant for changes in phonon behavior, the thermal conductivity can be expressed as a function
of V2 and V3 as

κ = Cv2τ = κ0 F (ω, τ ) = κ0 F (V2, V3) , (13)

where κ0 is the thermal conductivity of the undeformed structure. Function F represents normalized
thermal conductivity as a function of strain. At zero strain, the value of F is 1, so that κ = κ0. The
function F reflects the effects of second-order and third-order force constants. A simple form of F
is chosen as

F (ε) =
[

V2 (ε)

V2 (0)

]a [
V3 (ε)

V3 (0)

]b

, (14)

where a and b are parameters and V2 (ε) and V3 (ε) are second-order and third-order force constants
at strain ε, respectively. This equation is not obtained through a derivation. However, advantages of
using such a simple expression are convenience and efficiency in the prediction of thermal response.
The relation between the thermal response and function F is similar to the relation between the
physical properties and the empirical potential. For example, the empirical potential is obtained by
fitting against ab initio calculations or experimental properties. The MD calculation using empirical
potentials is an approximation of the quantum mechanical calculation. In spite of this limitation,
empirical potentials are widely used for prediction of physical properties because of its efficiency.
Similarly, this expression of thermal conductivity in Eqn. (14) is useful in the prediction of the
structure dependence of thermal conductivity, as described in the next section. In this paper, the
parameters are chosen such that a = −1 and b = 2 from the relation between phonon group velocity
and phonon relaxation time.26 The strain dependence of the thermal conductivity is obtained by
following the Peierls-Boltzmann formulation.26 Each parameter contains the effects of phonon
relaxation time and phonon group velocity. The anharmonic scattering is dependent on both V2 and
V3 in Eqns. (10) and (12). Using this model, we can predict the rate of change of thermal conductivity
of deformed nanowires. The values for parameters a and b are the same regardless of wire diameter,
strain, and temperature.

For the model of Bhowmick and Shenoy,26 the thermal conductivity is expected to scale with
strain as κ ∼ ε−μ, where μ is a potential dependent parameter. Because the phonon frequency and
the third-order force constant are considered to scale with temperature and strain only, the effect
of phase transformations is not considered. This model does not use the MD simulation as input,
rather, data obtained from MD simulations are fitted to the function of κ = AT −λε−μ, where A, λ,
and μ are constants. As shown in Fig. 4 of Ref. 26, the thermal conductivity decreases under tensile
stress and increases under compression monotonically. This model quantifies the effect of strain on
thermal conductivity. However, it does not have predictive power because the constants are obtained
by fitting MD results to the function. To calculate the thermal conductivity at each strain, the model
requires MD simulations using the equilibrium Green-Kubo method or the non-equilibrium direct
method. For this reason, this model is not appropriate for prediction of thermal responses of the
structures that undergo phase transformations in response to mechanical loading.
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In the model presented here, the effects of strain and structural change are included in the pre-
diction of thermal conductivity. The calculation of the second-order and third-order force constants
uses the configurational information obtained from MD simulations. This new model accounts for
the effects of deformation (due to both elastic straining and structure changes) on thermal conduc-
tivity at a fundamental, atomistic level. Specifically, the differences in thermal conductivity between
different crystal structures23 are captured because the atomistic configuration from MD simulations
contains information from both elastic straining and crystal structure. The dependence of the ther-
mal conductivity on structural changes results from the dependence of phonon behavior on material
structure and is not described in the previous model which is based on strain.26 Since the thermal
conductivity of unstressed nanowires has been investigated extensively,20, 21, 30–34 the focus here is on
the thermal conductivity of deformed nanowires. The analysis combines the use of MD simulations
of mechanical response to applied loading and the use of the model for the thermal evaluation, with
the former providing input for the later in the form of structural quantification of the deformed
wires. The model predicts the thermal conductivity of deformed nanowires by using the thermal
conductivity of the unstressed nanowire and MD simulations of mechanical response. This approach
requires only 2% of the computational cost of the classical Green-Kubo calculations.

III. RESULTS

The thermal conductivity of [0001]-oriented GaN nanowires is evaluated using the model. The
atomistic configurations of deformed nanowires come from MD simulations of the mechanical
responses in our previous work in Ref. 23. The MD simulations in the previous study are carried
out at T = 300 K using the LAMMPS code. The nanowires are oriented in the [0001] direction
with hexagonal cross-sections as shown in Fig. 1 of Ref. 23. The Buckingham potential35 and
the Wolf summation36, 37 are used to describe the interactions between atoms. The mechanical
responses are analyzed using a quasi-static loading increment of 20,000 time steps with an NVT
ensemble (canonical ensemble). To evaluate the thermal conductivity using the Green-Kubo method,
the heat flux of each deformed nanowire is calculated over one million time steps with an NVE
ensemble (microcanonical ensemble). Details of the MD simulations are described in Ref. 23. The
computational cost for the mechanical response is only 2% of that for the Green-Kubo calculation
of thermal conductivity. For each deformed configuration, V2 and V3 are calculated using the same
interatomic potential as used in the previous study. The force constants associated with the thermal
conductivity in the axial direction are calculated by summing the second and third-derivatives of
the potential (Buckingham and columbic) over all possible pairs. Equations (8) and (11) can be used
to calculate V2 and V3 because the Buckingham potential35 and the Wolf summation36, 37 are both
pairwise. Finally, the thermal conductivity of the deformed nanowire is calculated based on the
configurational data and the force constants.

Figure 3 compares the thermal conductivity predicted by the model with that calculated using
the Green-Kubo method in Ref. 23. The diameters of the wires considered are 2.91 and 3.55 nm and
the temperature is 300 K. The solid lines indicate model prediction and the symbols with error bars
indicate Green-Kubo results. The dependence of thermal conductivity on strain and structural change
is successfully captured by the model prediction which is in agreement with the Green-Kubo results.
As shown in Fig. 3(a) (diameter d = 2.91 nm), the thermal conductivity decreases by 15% as the
strain increases from zero to 0.06 under tensile loading, and increases by 30% as the strain decreases
from zero to -0.06 under compression. The model captures the dependence of thermal conductivity
on structural deformation quite well in both loading and unloading. The thermal conductivity of the
nanowires at a strain of 0.01 in the unloading process (when both TS- and WZ-structured regions
coexist) is 25% lower than that of the WZ-structured nanowires at the same strain under loading.
The same trend is seen for the nanowire with a diameter of d = 3.55 nm in Fig. 3(b), with good
agreement between the model prediction and the Green-Kubo results. The thermal conductivity of
the nanowires that contain the inversion domain boundaries23 at zero strain in the unloading process
is 20% lower than that of the unstressed WZ wires.

In Fig. 3, the thermal conductivity predicted by the model does not follow a smooth line. This
phenomenon comes from the uncertainty in MD simulations. The thermal conductivity values from
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FIG. 3. Thermal conductivities of GaN nanowires at 300 K calculated using the Green-Kubo method and the model:
(a) nanowire with diameter d = 2.91 nm; and (b) nanowire with diameter d = 3.55 nm. Error bars denote standard deviation
of conductivity.
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FIG. 4. Atomistic configurations of a nanowire with diameter d = 3.55 nm at T = 1500 K during loading and unloading:
(a) WZ-structured nanowire at zero strain; (b) TS-structured nanowire at a strain of 0.1; (c) WZ-TS structured nanowire at a
strain of 0.02; and (d) WZ-TS structured nanowire at a strain of -0.02.

Green-Kubo calculations are averages of at least five MD simulations which are different only in the
realization of the initial random atomistic velocities.23 The standard deviation for the conductivity
obtained from Green-Kubo calculations is indicated by the error bars in Fig. 3. The errors for the
model prediction are also shown because the model uses the atomistic configurations from the same
MD simulations of the mechanical response. The percent errors between the model prediction and
the Green-Kubo results for the nanowires in Fig. 3(a) and Fig. 3(b) (d =2.91 and 3.55 nm) are 10.1%
and 10.2%, respectively.

The thermal responses of the same nanowire (d = 3.55 nm) during loading and unloading at
T = 1500 K are also analyzed. The phase transformation from WZ to TS is observed, as shown in
Fig. 4(b). At 1500 K, the thermal conductivity predicted by the model is similar to that given by
the Green-Kubo method, as shown in Fig. 5. As the strain increases from zero to 0.12 under tensile
loading, the thermal conductivity decreases by 30% according to Green-Kubo and 40% according
to the model. In the unloading process, the interior region of the nanowire transforms from TS to
WZ, as shown in Figs. 4(c) and 4(d). The thermal conductivity of the nanowire at a strain of 0.02 in
the unloading process is 18% lower than that for the WZ-structured wires at the same strain under
tensile loading. The model predicts the thermal conductivity of the same nanowire as 25% lower
than that of the WZ wires under tensile loading. The model prediction is in good agreement with the
Green-Kubo results at high temperatures as well. The percent error between the model prediction
and the Green-Kubo results for the nanowires in Fig. 5 is 11.7%.

IV. SUMMARY

An analytical model is developed to evaluate the thermal conductivity of semiconducting com-
pounds during deformations that involve structural changes. This model reflects the fact that the
ensemble averages of atomistic behaviors are determined by the atomistic potentials of materials.
The evaluation of thermal conductivity assumes that the second-order and third-order force con-
stants dominate phonon behaviors during structural deformation. The force constants are calculated
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FIG. 5. Thermal conductivities of GaN nanowires with diameter d = 3.55 nm at 1500 K calculated using the Green-Kubo
method and the model. Error bars denote standard deviation of conductivity.

by the interatomic potential and the atomistic configuration obtained in the MD calculations for
mechanical response. The dependence of thermal conductivity on strain and crystal structure is
described through the use of deformed atomistic configurations. Application of this approach to
GaN nanowires 2.91-3.55 nm in size over the temperature range of 300-1500 K has yielded results
that are in good agreement with data obtained using MD-based Green-Kubo method. This model is
50 times more efficient than MD calculations.
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