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Abstract

We have previously discovered a novel shape memory effect and pseudoelastic behavior in single-

crystalline face-centered-cubic metal (Cu, Ni, and Au) nanowires. Under tensile loading and

unloading, these wires can undergo recoverable elongations of up to 50%, well beyond the

recoverable strains of 5–8% typical for most bulk shape memory alloys. This phenomenon only

exists at the nanoscale and is associated with a reversible lattice reorientation driven by the high

surface-stress-induced internal stresses. We present here a micromechanical continuum model for the

unique tensile behavior of these nanowires. Based on the first law of thermodynamics, this model

decomposes the lattice reorientation process into two parts: a reversible, smooth transition between a

series of phase-equilibrium states and a superimposed irreversible, dissipative twin boundary

propagation process. The reversible part is modeled within the framework of strain energy functions

with multiple local minima. The irreversible, dissipative nature of the twin boundary propagation is

due to the ruggedness of strain energy curves associated with dislocation nucleation, glide, and

annihilation. The model captures the major characteristics of the unique behavior due to lattice

reorientation and accounts for the size and temperature effects, yielding results that are in excellent

agreement with the results of molecular dynamics simulations.
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1. Introduction

Until recently, the shape memory effect (SME) and its underlying pseudoelasticity were
considered unique to shape memory alloys (SMAs), liquid crystal elastomers, and
piezoelectric ceramics (Otsuka and Wayman, 1998). However, our recent research revealed
a novel SME and rubber-like pseudoelastic behavior in single-crystalline metal nanowires
(including Cu and Ni) with cross-sectional dimensions smaller than approximately 5 nm
(Liang and Zhou, 2005, 2006; Liang et al., 2005). Specifically, under tensile loading and
unloading, these nanowires can recover elongations of up to 50%, well beyond the
recoverable strains of 5–8% typical for most bulk SMAs. This behavior is associated
with a reversible lattice reorientation process within the face-centered cubic (FCC)
crystalline structure and is driven by the surface stress and high surface-to-volume ratios
of these quasi one-dimensional nanomaterials. This novel shape memory behavior of
metal nanowires has also been confirmed by the research of Park et al. (2005) and Park and
Ji (2006).
Due to the lattice reorientation, the nanowires exhibit a unique tensile behavior under

isothermal, quasi-static conditions, as shown in Fig. 1. The principal interest of this paper
is to develop a micromechanical continuum model for this unique tensile behavior based
on detailed analysis of the deformation mechanisms. In particular, the model focuses on
the lattice reorientation that occurs through twin boundary propagation. As will be
discussed in the next section, this reversible lattice reorientation involves two wire
configurations: the initial /1 1 0S/{1 1 1} configuration with a /1 1 0S wire axis and {1 1 1}
surfaces and the deformed /0 0 1S/{1 0 0} configuration with a /0 0 1S wire axis and
{1 0 0} surfaces, as shown in Fig. 2. Although both wire configurations have the same FCC
structure, the /1 1 0S/{1 1 1} wires have lower strain energy levels than the /0 0 1S/{1 0 0}
configurations primarily because {1 1 1} surfaces have lower energies than {1 0 0} surfaces.
Since the surface-to-volume ratios of nanowires are very large, surface energies dominate
the strain energy difference between different nanowire configurations (discussed in
Section 3.2). Because the different wire configurations have different strain energies and
stabilities, we treat them as two phases in the following discussion. Accordingly, the lattice
reorientation process can be modeled as a phase transformation.
Fig. 1. Stress–strain curve of a FCC nanowire under isothermal quasi-static tensile deformation.
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Fig. 2. Pseudoelastic behavior of metal nanowires: (a) a self-equilibrated /1 1 0S/{1 1 1} wire with rhombic cross-

sections (a ¼ 70.51 and b ¼ 109.51) and (b) a stretched /0 0 1S/{1 0 0} wire with square cross-section.
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Before proceeding to more details, we would like to clarify the definition of the
aforementioned strain energy, because it is critical for the development of the model and
will be frequently used in this paper. In continuum mechanics, strain energy is usually
defined as the potential energy stored in a body by virtue of an elastic deformation, equal
to the work that must be done to produce the deformation (Parker, 2002). The strain
energy in this paper includes not only the potential energy associated with bulk elastic
deformation, but also the surface energy, reflecting the fact that the surface energy is due to
the elastic deformation of atomic lattices on and near surfaces. More generally, the strain
energy of a nanowire here is defined as the excessive potential energy it possesses relative to
its potential energy as part of an infinitely large bulk material in equilibrium at a given
temperature. If the wire size is very large (approaching microns or even higher), the surface
energy is negligible compared to the bulk potential energy. At the nanoscale, however, the
surface energy is significant and even dominates the total strain energy. More discussions
regarding the total strain energy and its surface and bulk components in nanowires will be
given in Section 3.2.

We found that this lattice reorientation process is dissipative even as the deformation
rate tends to zero (i.e., quasi-static conditions). In this study, this lattice reorientation
process is decomposed into a non-dissipative part and a superimposed dissipative part. The
non-dissipative part describes the smooth transition between a series of phase-equilibrium
states; i.e., an ideal and thermodynamically reversible process. The dissipative part is the
process of twin boundary propagation, which involves passing over the energy barriers
between phase-equilibrium states—a thermodynamically irreversible process. Since the
/1 1 0S/{1 1 1} and /0 0 1S/{1 0 0} configurations each correspond to a local energy
minimum in the strain energy of nanowires under tensile elastic deformation, the reversible
part is modeled within the framework of strain energy functions with multiple local
minima (Abeyaratne and Knowles, 1993; Abeyaratne and Kim, 1994; Abeyaratne and
Vedantam, 2003). Specifically, at any given strain, the wire adopts the configuration
that minimizes the strain energy, subject to the appropriate kinematic constraints and
force balance. Although this framework has been very successful in modeling static
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phase-equilibrium states, there are some practical difficulties in modeling dynamic and
quasi-static processes, primarily due to the lack of an accurate kinetic law for phase
boundary propagation. Since our interest is in the quasi-static process, we do not attempt
to explicitly calculate the driving force or derive an explicit kinetic law to determine the
relationship between the driving force and phase boundary propagation velocity. Instead,
we study the source of energy dissipation by performing a detailed analysis of the lattice
scale deformation mechanism. Specifically, the energy dissipation is derived from the
rugged strain energy landscape associated with dislocation nucleation, propagation, and
annihilation during twin boundary propagation.
The organization of this paper is as follows: Section 2 introduces the novel SME and

pseudoelastic behavior of nanowires. Specifically, the tensile behavior is partitioned into
four stages based upon the underlining deformation mechanisms. The focus is on the
lattice reorientation process, which is critical to the shape memory behavior of nanowires.
Section 3 briefly introduces the theory of strain energy functions with multiple local
minima for modeling phase transformations. The strain energy and stability of nanowires
are also analyzed with an emphasis on the dominance of surface energies. In Section 4, we
present a piecewise smooth model with each piece corresponding to one deformation stage.
In Section 5, the model predictions are compared with the results of molecular dynamics
(MD) simulations. We demonstrate that the model accurately captures the major
characteristics of the unique tensile behavior associated with the lattice reorientation
process observed in the MD simulations, as well as the major characteristics of the
observed size and temperature effects. We summarize our results in Section 6.

2. Novel shape memory behavior of metal nanowires

The shape memory metal nanowires are single FCC crystals with a /1 1 0S axis and
{1 1 1} transverse surfaces (hereafter denoted as the /1 1 0S/{1 1 1} wire or configuration)
in their unstressed free-standing states, as shown in Fig. 2(a). This configuration represents
a low-energy state for FCC metal nanowires and has been observed frequently in
experiments and atomistic simulations for Au, Cu, and Ag nanowires (Kondo and
Takayanagi, 1997; Liu and Bando, 2003; Liu et al., 2003; Rodrigues and Ugarte, 2003;
Diao et al., 2004a, b). Upon isothermal, quasi-static, tensile deformation, these /1 1 0S/
{1 1 1} wires exhibit a stress–strain behavior that is drastically different from those of the
corresponding bulk metals, as shown in Fig. 1. Specifically, the stress–strain curves consists
of two elastic deformation stages (O-A and C-D), an intervening stage of slow ‘‘strain
hardening’’ over a wide range of strain (B-C), and two stages of precipitous stress drop
(A-B and D-E). This behavior arises from a unique underlining deformation process:
(1)
 between O and A the /1 1 0S/{1 1 1} wire undergoes elastic stretching,

(2)
 the load drop between A and B corresponds to the formation of one twin boundary,

(3)
 point A corresponds to the beginning of the lattice reorientation process which leads to

the new /0 0 1S/{1 0 0} configuration (see Fig. 2(b)) at point C in Fig. 1,

(4)
 between C and D, the newly formed /0 0 1S/{1 0 0} wire undergoes elastic stretching,

and

(5)
 further loading beyond D causes the wire to yield through the formation of full

dislocations which ultimately lead to necking and fracture of the nanowire at E (Liang
and Zhou, 2004).
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behavior and SME of the wires because it is reversible upon unloading. This lattice

The unique lattice reorientation process (A-C in Fig. 1) is the key to the pseudoelastic

reorientation occurs through the propagation of a coherent twin boundary separating the
initial /1 1 0S/{1 1 1} phase and the new /0 0 1S/{1 0 0} phase, as shown in Fig. 3. The
twin boundary propagates in a ‘‘stick–slip’’ manner through successive dislocation
nucleation, glide, and annihilation events, which are the source of energy dissipation—no
matter how slow the deformation progresses (Vainchtein and Rosakis, 1999). As the twin
boundary sweeps through the wire, the wire progressively transforms into the new /0 0 1S/
{1 0 0} phase. Upon arrival of the twin boundary at the far end of the wire (corresponding
to point C in Fig. 1), the whole wire is in the /0 0 1S/{1 0 0} phase (Liang et al., 2005;
Liang and Zhou, 2006).

Upon unloading above a critical temperature, the /0 0 1S/{1 0 0} wire spontaneously
transforms back to the original /1 1 0S/{1 1 1} configuration via a lattice reorientation
process that is the reverse of that described above for loading. The reversibility of the
lattice reorientation from /1 1 0S/{1 1 1} to /0 0 1S/{1 0 0} allows the associated
deformation to be fully recovered, giving rise to the pseudoelastic behavior of the wire.
This spontaneous lattice reorientation occurs because the /1 1 0S/{1 1 1} configuration has
a lower total energy and is more stable than the /0 0 1S/{1 0 0} configuration. Therefore,
the /0 0 1S/{1 0 0} wire has a natural tendency for spontaneous reorientation back to the
Fig. 3. Cross-sections of a 1.96� 1.96 nm Cu wire at a strain of 0.24. The right image shows a sectional view along

the wire axis and the ½1̄ 1̄ 0� diagonal of the cross-section: cross-section 1-1 shows the elongated hexagonal lattice in

the unrotated domain with the /1 0 0S/{1 1 1} phase, cross-section 2-2 is in the transition region containing both

the /0 0 1S/{1 0 0} and the /1 1 0S/{1 1 1} phases, and cross-section 3-3 shows the square lattice in the reoriented

domain with the /0 0 1S/{1 0 0} phase, the atoms are colored by centrosymmetry values.
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/1 1 0S/{1 1 1} configuration upon removal of the load. This reverse reorientation lowers
the surface energy of the system, since the {1 0 0} surfaces have higher energy than the
{1 1 1} surfaces. Crudely, this is because the {1 1 1} surfaces are close-packed while the
{1 0 0} surfaces have a relatively low atomic density. While this provides the
thermodynamic driving force for the transformation, the motion of the individual
dislocations that translate the twin boundary are driven by the Peach–Koehler force
associated with stresses within the wire. In the absence of an applied load, the tensile
surface stress produces a compressive stress within the wire. While this stress is typically
very small in bulk materials, the fact that it scales inversely with the linear dimension of the
wire cross-section leads to very large stresses (on the order of GPa here (Liang and Zhou,
2005)) due to the extremely large surface-to-volume ratios in nanowires. This is one of
the reasons why SME and pseudoelastic behavior are not seen in bulk single crystals of
these metals.
Like the behavior of normal bulk SMAs, the spontaneous lattice reorientation is

strongly temperature-dependent. Specifically, the reverse lattice reorientation from
/0 0 1S to /1 1 0S occurs only above a size-dependent critical temperature Tcr. If
unloading takes place at temperatures below Tcr, the reverse lattice reorientation does not
occur and the wire retains the /0 0 1S/{1 0 0} configuration. When subsequently heated
above Tcr, the unloaded /0 0 1S/{1 0 0} wire spontaneously returns to its original /1 1 0S/
{1 1 1} configuration through the reverse lattice reorientation. This is a novel SME driven
by surface stress and the high surface-to-volume ratios of the nanowire. The observed
temperature-dependence is related to the energy barrier between the two phases and the
driving force required to cross it. To initiate the reorientation, partial dislocations nucleate
and propagate to move the twin boundary. There is an additional barrier associated with
the nucleation of the partial dislocations. Thermal vibration can provide the necessary
energy for overcoming the barrier (Meyers, 1984).
Compared to bulk SMAs, the shape memory nanowires have extraordinarily large

reversible strains (up to 50%) primarily due to the large transformation strain (etr)
associated with the forward and reverse lattice reorientations. Specifically, etr can be
quantified by a simple crystallographic analysis. Fig. 4 compares the same ð1 1̄ 0Þ plane in
the /1 1 0S/{1 1 1} (at point A in Fig. 1) and the /0 0 1S/{1 0 0} configurations (at point C
in Fig. 1). Clearly, the forward (loading) and backward (unloading) lattice reorientations
manifest as 901 rotations in opposite directions of the unit cell in the ð1 1̄ 0Þ plane.
The length and width of the rectangular unit cell in both cases are, respectively, a andffiffi
2
p

2
a; where a is the lattice constant in the stressed states and is assumed to be the same at A

and C. Hence, the axial strain associated with the lattice reorientation between A and C is
given by

�tr ¼ a�

ffiffiffi
2
p

2
a

 !, ffiffiffi
2
p

2
a ¼ 0:414. (1)

Clearly, etr is an attribute of the FCC structure and is independent of a. Consequently,
the pseudoelastic strain associated with the lattice reorientation which constitutes the
primary part of the total recoverable strain (er) is the same for wires of all FCC metals and
of all sizes. In addition to etr, er also includes the elastic strain �eh1 1 0i associated with the
lattice stretching in the /1 1 0S/{1 1 1} configuration between O and A (Fig. 1) and the
elastic strain �eh0 0 1i associated with the lattice stretching in the /0 0 1S/{1 0 0}
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Fig. 4. Reversible lattice reorientations upon loading and unloading in metal nanowires; (a) a schematic

illustration of the wire configurations before and after lattice reorientation, (b) the ð1 1̄ 0Þ atomic plane highlighted

in blue in (a), and (c) the same ð1 1̄ 0Þ atomic plane after lattice reorientation highlighted in red in (a).
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configuration between C and D, i.e.,

�r � �
e
h1 1 0i þ �tr þ �

e
h0 0 1i. (2)

Overall, er is �50%, well beyond the 5–8% reversible strains typical for most bulk
SMAs.

3. Phase transformation model based upon strain energy functions

This section briefly introduces the theory of strain energy functions with multiple local
minima for modeling of phase transformations. The strain energy functions of nanowires
are also analyzed with an emphasis on the dominance of surface energies.

3.1. Theory of strain energy functions with multiple local minima

With regard to the modeling of phase transformations, Abeyarantne et al. presented a
theoretical framework of strain energy functions with multiple local minima, where each
local energy minimum corresponds to a phase or variant of the material (Abeyaratne and
Knowles, 1993; Abeyaratne and Kim, 1994; Abeyaratne and Vedantam, 2003). As the load
is varied, the relative stability of each phase changes and the less stable phase transforms
into the more stable phase through the propagation of the phase boundary. The initiation
of the phase transformation is governed by a nucleation condition, and the rate of
transformation or how fast the phase boundary propagates is governed by a kinetic law. In
this framework, a thermodynamics driving force is defined by the states at the vicinity of
the phase boundary. For example, in one-dimension:

f ¼ 1wU� hsi1�U, (3)

where 1wU denotes the jump of strain energy density across the phase boundary, /sS
denotes the average stress in the vicinity of the phase boundary, and 1eU denotes the strain
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jump across the phase boundary. The kinetic law determines the relation between the
velocity of the phase boundary (n) and the driving force (f), i.e.,

f ¼ jðvÞ, (4)

where f must satisfy the dissipation inequality associated with the phase boundary
propagation in the form of

f vX0. (5)

The preceding framework has been successful in modeling martensitic transfor-
mations in bulk SMAs, especially for static problems. However, one difficulty with this
framework is the construction of accurate strain energy functions. Many strain energy
functions can only qualitatively capture the characteristics of the phase transfor-
mation, but fail to provide quantitatively accurate models, primarily because of the
restrictive nature of the kinematic constraints (Abeyaratne et al., 2001). Moreover,
there are more difficulties in using the preceding framework for dynamic problems, e.g.,
the lack of an accurate kinetic law and quantitative information on energy dissipa-
tion. Accurate kinetic laws are difficult to obtain because they are unrestricted by
continuum theory except by the necessity of having to satisfy the dissipation inequality.
Usually, microscopic (e.g., lattice-based) models are required to analyze the many factors
that determine the kinetic laws (Abeyaratne and Knowles, 1991). The dissipation
inequality only implies that the energy dissipation must be greater than zero, but it
does not give any quantitative information. Nonetheless, even the quasi-static
phase transformation process has to be analyzed as a dynamic process because the
driving force f 6¼0.
To avoid the difficulties in the analysis of dynamic processes within the preceding

framework, the present model decomposes the quasi-static lattice reorientation process
into a smooth transition between a series of static phase-equilibrium states superimposed
with a phase boundary propagation process based on the first law of thermodynamics.
After the decomposition, each of the phase-equilibrium states in the smooth transition can
be studied individually as a static problem. And the energy dissipation associated with the
phase boundary propagation can be analyzed independently.
Specifically, the static phase-equilibrium problem is studied by constrained strain

energy minimization within the preceding framework without the necessity of kinetic
laws. Instead of constructing the complete strain energy functions over a full 3D strain
space, we only consider the 1D strain energy function because of the near 1D nature of
the wire structure and the 1D nature of the uniaxial tensile deformation. Moreover, we
neglect the portion of the strain energy function corresponding to unstable states and
only use the portion of the strain energy functions around the local energy minima, where
phases are stable. To state it more precisely, we only consider strain energy functions
corresponding to the elastic deformations of the two pure phases involved in lattice
reorientation. Therefore, an accurate strain energy function can be easily obtained
from experiments, MD simulations, and even analytical expressions (as discussed in
the next subsection) based upon bulk and surface elastic constants. Since the strain
energy functions of the pure phases already account for the significant surface
energies in nanowires, the model automatically accounts for the size dependence of this
behavior.
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3.2. Strain energy of nanowires

The /1 1 0S/{1 1 1} and /0 0 1S/{1 0 0} wire configurations have different elastic
constants and strain energies when subject to the same elastic deformation, even though
both configurations are FCC. The strain energies of these two phases are critical to the
lattice reorientation because the strain energies determine the relative stability of the two
phases.

Compared to the strain energy of bulk materials, the strain energy of nanowires is not
only a function of strain, but also the wire size. Furthermore, the strain energy of a
nanowire does not go to zero in the zero strain limit. These special characteristics originate
in the large surface-to-volume ratio of nanowires. We know atoms on or near a free surface
have different energies from those in the bulk because surface atoms experience a different
local environment from those in the bulk of a material. Such surface effects are usually
insignificant and negligible in bulk materials because the number of surface atoms is small
compared to the total number of atoms. However, these surface effects can be substantial
for nanowires because of the extremely large surface-to-volume ratios. For example, the
surface-to-volume ratio of a 1.8� 1.8 nm nanowire is 106 times larger than that of a typical
macroscopic tensile specimen which has a cross-sectional dimension of 1.8� 1.8mm
(Liang and Zhou, 2005). The surface energy constitutes a significant portion of the total
strain energy of the wire. Taking surface energies into account, the strain energy of
nanowires can be written in the following form (Streitz et al., 1994; Cammarata et al.,
2000; Dingreville et al., 2005):

U ¼ Ubulk þU surface, (6)

where Ubulk is the strain energy in the bulk of the wire, and Usurface the surface energy.
Specifically the strain energy for a /1 1 0S/{1 1 1} wire with lateral size d0 and length l0
(see Fig. 2(a)) is

U1 1 0 ¼ u1 1 0ð�Þl0d
2
0 sin aþ 4g1 1 1ð�Þl0d0, (7)

where u110(e) is the strain energy of a bulk material stretched in the /1 1 0S orientation,
a ¼ 70.51 is the sharp angle of the rhombic cross-section, and g111(e) is the surface energy
of {1 1 1} surfaces. Similarly, the strain energy for a /0 0 1S/{1 0 0} wire with lateral size d

and length l (see Fig. 2(b)) is

U001 ¼ u001ð�Þld
2
þ 4g100ð�Þld, (8)

where u001(e) is the strain energy of a bulk material stretched in the /0 0 1S orientation
and g100(e) the surface energy of {1 0 0} surfaces. Fig. 5(a) shows the total strain energy and
its two components, Ubulk and Usurface, for a 1.45� 1.45 nm /0 0 1S/{1 0 0} wire. Clearly,
Usurface dominates the total strain energy due to the extremely high surface-to-volume
ratios.

We can also see that the minimum strain energy point, which corresponds to the
unstressed self-equilibrium state, is at a compressive strain (Dingreville et al., 2005). This
compressive strain, in the self-equilibrium state, is induced by surface stress in the
nanowire (assuming the most common situation, where the surface stress is tensile).
Consider a wire cut from a bulk; the wire will contract along the axial direction and expand
in the lateral directions because of the tensile surface stresses (assuming a positive Poisson
ratio), as shown in Fig. 5(b). The axial contraction causes a compressive stress s in the core
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a wire under surface stress.
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of the wire, which is balanced by the tensile surface stress in the equilibrium state. The
magnitude of s is inversely proportional to the lateral size of the wire. In a nanowire, s can
easily be of the order of 1GPa. In contrast, s is only on the order of Pascals in bulk
materials and thus is negligible.
The self-equilibrium strain e* can be obtained analytically by minimizing the strain

energy in Eq. (6),

qU

q�

����
�¼��
¼ 0. (9)

In MD simulations, e* can be obtained by simulating a top–down nanowire fabrication
process, which involves cutting a wire from bulk and relaxing the wire at a constant
temperature until it reaches the self-equilibrium state. e* can then be calculated from the
original length and the length in the self-equilibrium state.
e* is related to wire size and configurations (wire axis orientation and transverse

surfaces). For the wires of the same dimensionless shape, e* is smaller in larger wires. For
wires of the same size, e* in /1 1 0S/{1 1 1} wires is smaller than that in /0 0 1S/{1 0 0}
wires. For example, e* is equal to 0.02 and 0.04, respectively, for a 1.8� 1.8 nm /1 1 0S/
{1 1 1} Cu wire and the corresponding /0 0 1S/{1 0 0} wire at 300K.
In calculating e*, we have used the undeformed bulk lattices as the reference states to

show the axial contraction under surface stress. However, in the following discussions, we
use the unloaded self-equilibrium states as the reference states of the wires unless otherwise
indicated. With these reference states, the stress is zero at zero strain. Moreover, the wire
has the minimum strain energy in its reference state. It is important to point out that the
actual strain energy values also depend on the selected ground state. In this study, the
ground state is the undeformed bulk lattice and strain energy of nanowires does not equal
zero at the reference states. As shown in Fig. 6, the strain energies at the reference states
are 2.95 and 3.24GPa for the /1 1 0S/{1 1 1} and /0 0 1S/{1 0 0} phases, respectively. In
the next section, a constitutive model will be derived based on the strain energy functions
of /1 1 0S/{1 1 1} and /0 0 0S/{1 0 0} wires as shown in Fig. 6.
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4. Piecewise smooth micromechanical continuum model

As discussed in Section 2, the tensile deformation behavior of wires can be partitioned
into four deformation stages according to the underlining deformation mechanisms. We
only discuss the first three stages because only their associated deformations are reversible
upon unloading. The constitutive model is piecewise smooth with each piece associated
with one of the deformation stages. Particularly, this model focuses on the lattice
reorientation, because it is this unique deformation mechanism that leads to the novel
SME of metal wires with large reversible strains. The model captures the major
characteristics of the lattice reorientation process, especially all the critical parameters
(see Fig. 1), including
(1)
 the yield stress sy at the initiation of lattice reorientation,

(2)
 the start and finish strains (es and ef) for the lattice reorientation process, and

(3)
 the stress levels during lattice reorientation, especially the start and finish stresses

(ss and sf).
Before we introduce the model, it is important to clarify the definitions of the different
stresses and strains involved in this analysis. The stress s and strain e in the stress–strain
curve in Fig. 1 are the total nominal stress and nominal strain with the assumption that
stresses and strains are uniform throughout the wire, even though the stresses and strains
are not necessarily the same in the two phases during lattice reorientation. Specifically, e is
the nominal engineering strain with the initial /1 1 0S/{1 1 1} wire in its self-equilibrated
state as the reference state. Hence, e is given by

� ¼
d
l0
, (10)

where d is the total displacement and l0 the length of the initial unstressed /1 1 0S/{1 1 1}
wire at a given temperature. During deformation, the total mechanical work done by
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external load is

W ¼ V0

Z �

0

sd�: (11)

Accordingly, the average stress s is given by

s ¼
1

V0

qW

q�
, (12)

where V0 is the initial wire volume in the unstressed state.
In the following discussions, we also need to consider the local stresses (s110 and s001)

and strains (e110 and e001) in the /1 1 0S/{1 1 1} and /0 0 1S/{1 0 0} phases, respectively, as
shown in Fig. 3. Specifically, e110 and e001 are engineering strains with the reference states
being the unstressed self-equilibrium states of the /1 1 0S/{1 1 1} and /0 0 1S/{1 0 0}
phases, respectively. Obviously, s110 and e001 are given by

s110 ¼
du110

d�110
(13)

and

s001 ¼
du001

d�001
, (14)

where u110 and u001 are the strain energy density functions of two phases, as shown in
Fig. 6.

4.1. Elastic deformation of the /1 1 0S/{1 1 1} phase

Initially, the wire is in a single /1 1 0S/{1 1 1} phase state. Upon tensile loading, the
/1 1 0S/{1 1 1} wire first undergoes elastic deformation (O-A in Fig. 1) and all the input
mechanical work is stored as strain energy (U110) in the wire, i.e. U110 ¼W. Substitution of
U110 into Eq. (12) yields the stress–strain relation

s ¼ s110 ¼
1

V0

qU110

q�
¼

qu110

q�
. (15)

4.2. Dislocation nucleation at the initiation of lattice reorientation

The lattice reorientation begins when the /1 1 0S/{1 1 1} wire reaches its elastic limit at
es, as shown in Fig. 1. Beyond es, a single dislocation is emitted and glides across the wire,
forming a coherent twin boundary. Therefore, the initiation of the lattice reorientation is
very similar to the initiation of plasticity because both processes involve defect nucleation.
The dislocation nucleation in nanowires is heterogeneous because wires have large free

surface-to-volume ratios and sharp inter-facet edges due to the rhombic cross-sectional
shape (Dumitrica et al., 2006). Various researchers have shown that the lowest energy
barrier for the nucleation of dislocations corresponds to a path that initiates from the free
surface with or without defects (Trushin et al., 2002). The four inter-facet edges are the
most probable nucleation sites because atoms at these edges are the most underbonded.
Consider now a {1 1 1} slip plane, shown in Fig. 7. Vertices A and A0 are the likely
nucleation sites for 1

6
ð1 1 1Þ½1 1 2̄� Shockley partial dislocations because the long diagonal
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Fig. 7. Two separated portions of a wire showing a model to calculate the resolved shear stress, s is the external

loading stress, f is the angle between the loading direction and the normal to the {1 1 1} slip plane, l1 is the angle
between the loading direction and the ½1 1 2̄� slip direction for a Shockley partial dislocation, and l2 is the angle

between the loading direction and the ½1 1̄ 0� slip direction for a full dislocation.
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AA0 coincides with the ½1 1 2̄� slip direction. Similarly, vertices B and B0 are the likely
nucleation sites for ð1 1 1Þ½1 1̄ 0� full dislocations because the short diagonal BB0 coincides
with the ½1 1̄ 0� slip direction. Using the critical resolved shear stress (CRSS) criterion, we
demonstrate that partial dislocation slip is more favorable than full dislocation slip.
Specifically, we know that the RSS is given by

RSS ¼ sl cos f cos l, (16)

where sl is the local stress at the nucleation sites and cosf cos l the Schmid factor. The
Schmid factor for ð1 1 1Þ½1 1̄ 0� slip system is zero because the loading direction [1 1 0] is
perpendicular to the slip direction ½1 1̄ 0�, i.e. l ¼ 901, as shown in Fig. 7. This makes the
activation of ð1 1 1Þ½1 1̄ 0� slip systems highly unlikely. At the same time, the Schmid factor
for ð1 1 1Þ½1 1 2̄� is 0.43 with f ¼ 35.31 and l ¼ 531. Consequently, ð1 1 1Þ½1 1 2̄� is more
favored for nucleation and slip, leading to a twinning deformation mechanism.

It is found that the yield stresses of nanowires decrease with increasing wire size. The
same trend is also observed in gold nanowires (Gall et al., 2004). This size dependence is
primarily due to the surface-stress-induced compressive stresses in the core of nanowires
described in Section 3.2 (Diao et al. (2004b) and Gall et al. (2004)). Under tensile loading,
the external stress needs to overcome the internal compressive stress first and then cause
yielding of the wire. Since the magnitude of the internal compressive stresses increases with
decreasing wire size, the overall yield stress decreases with increasing wire size.

In addition to the dependence on wire size, various researchers have shown that
dislocation nucleation is also a kinetic process which depends on loading rate and
temperature (Schuh et al., 2005). The rate effect can be neglected here because we only
consider quasi-static processes. Suppose the nucleation of a dislocation requires an
activation energy ua, which is closely related to the unstable stacking fault energy. This
energy barrier can be lowered through mechanical work, or be overcome by an appropriate
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thermal fluctuation, or a combination of both. The probability of such an event in a given
volume of material is written as (Schuh et al., 2005)

_n ¼ _n0 � exp �
ua � sV

kT

� �
, (17)

where the attempt frequency for the event is _n0 per unit volume, the mechanical work is
the product of the stress s and an activation volume V, and the thermal energy is the
product of Boltzmann’s constant k and temperature T. Since thermal fluctuations facilitate
dislocation nucleation, less mechanical work is needed for dislocation nucleation at higher
temperatures. Therefore, the yield stress is lower at higher temperatures, as shown in
Fig. 8(b). The same trend is also observed in nanoindentation (Schuh et al., 2005).
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After partial dislocation nucleation, the stress drops precipitously because of the energy
dissipation and stress relaxation associated with the dislocation propagation, as shown in
Fig. 1. The partial dislocation moves along the {1 1 1} plane across the wire and leads to
the formation of a twin. Subsequently, the wire enters a phase-equilibrium state at Point B,
which will be discussed in the next section.

4.3. Lattice reorientation through twin boundary propagation

During lattice reorientation, the /1 1 0S/{1 1 1} and /0 0 1S/{1 0 0} phases coexist in the
wire, separated by a coherent twin boundary. During the deformation, the /1 1 0S/{1 1 1}
phase progressively transforms into the /0 0 1S/{1 0 0} phase as the twin boundary sweeps
down the length of the wire. The lattice reorientation is a dissipative process even under
isothermal, quasi-static deformation conditions. In this study, the lattice reorientation
process is decomposed into two parts: a reversible part and an irreversible part. For the
reversible part, we assume the wire smoothly goes through a series of phase-equilibrium
states. Nonetheless, the actual transitions between equilibrium states are not smooth
because there are barriers associated with lattice-scale defect nucleation (discussed later).
Hence, twin boundary propagation produces a serrated strain energy landscape (see Fig. 1)
with local peaks corresponding to unstable states and local minima corresponding to
metastable states. The wire successively passes through unstable states and then settles
into metastable states after overcoming the barrier. Meanwhile, the work required to
overcome the barrier is released when the system settles into a metastable state. This
release produces thermal energy, which is dissipated in the system by the constant
temperature thermostat used in the present isothermal simulation. The first law of
thermodynamics dictates that

W ¼ DU þQ, (18)

where W is the total input work, Q the energy dissipation associated with the irreversible
process. DU is the change in strain energy associated with the reversible process, i.e.,

DU ¼ U �U0, (19)

with U being the strain energy at the phase-equilibrium state during the deformation and
U0 being the strain energy of the unstressed /1 1 0S/{1 1 1} wire. Eqs. (12) and (18)
combine to give

s ¼
1

V 0

qðDUÞ

q�
þ

qQ

q�

� �
¼ se þ sdissip, (20)

where se is the part of the stress needed to drive the transition of the phase-equilibrium
states. It is determined by the elastic properties of the two phases. Specifically,

se ¼
1

V0

qðDUÞ

q�
¼

1

V 0

qðU �U0Þ

q�
¼

1

V0

qU

q�
. (21)

sdissip is the part of the stress required to drive or absorb the nucleation, propagation, and
annihilation of partial dislocations associated with the twin boundary propagation.
Obviously,

sdissip ¼
1

V0

qQ

q�
. (22)



ARTICLE IN PRESS
W. Liang et al. / J. Mech. Phys. Solids 55 (2007) 1729–17611744
In the following discussion, the reversible and irreversible parts of the lattice
reorientation process will be analyzed individually. First, the governing equation for a
single phase-equilibrium state will be derived based on the constrained minimization of
strain energies. The reversible smooth transition is obtained by solving these governing
equations for a series of phase-equilibrium states. Second, the source and mechanism of
the energy dissipation part are analyzed through the perspective of lattice-scale dislocation
activities and the characteristics of the associated energy landscape. This analysis allows
the dissipative process to be quantified.

4.3.1. Non-dissipative smooth transition between phase-equilibrium states
1.
 Kinematics

Consider a phase-equilibrium state corresponding to a nominal strain e in which two
phases coexist and are separated by a twin boundary, as shown in Fig. 3. Each phase is
elastically stretched. Therefore, the following field equations are satisfied:

�i ¼
ddi

dx
in each phase (23)

and

dþ ¼ d� at the twin boundary. (24)

Here, di is the axial displacement of the wire. For the /1 1 0S/{1 1 1} phase, i ¼ 1 1 0 and
di ¼ d110; for the /0 0 1S/{1 0 0} phase, i ¼ 0 0 1 and di ¼ d001. Similarly, ei is the local
strain in the wire with ei ¼ e110 in the /1 1 0S/{1 1 1} phase and ei ¼ e001 in the /0 0 1S/
{1 0 0} phase. d+ and d� denote the limiting values of the displacement on the two sides
of the twin boundary. Eqs. (23) and (24) imply that the displacement is continuous
within each phase and across the twin boundary, but the elastic strains are not
necessarily the same in the two phases. Generally, there is a strain jump across the twin
boundary.
It is important to note that the total strain e includes not only contributions from the
elastic strains in two phases (e110 and e001), but also the transformation strain (etr) due to
the phase transformation. Specifically,

� ¼
l � l0

l0
(25)

and

l ¼ l110 þ l001. (26)

Here, l0 is the initial total length of the stress-free /1 1 0S/{1 1 1} wire, l the current
length of the wire, and l110 and l001 are, respectively, the current lengths of the /1 1 0S/
{1 1 1} and /0 0 1S/{1 0 0} phases corresponding to the total nominal strain e. Note that

l110 ¼ l0110ð1þ �110Þ (27)

and

l001 ¼ l0001ð1þ �001Þ, (28)

where l0110 and l0001 are the lengths of the /1 1 0S/{1 1 1} and /0 0 1S/{1 0 0} phases in
their unstressed states, respectively. Another kinematic condition that must be satisfied
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during lattice reorientation is that the sum of the lengths of the untransformed /1 1 0S/
{1 1 1} phase and the transformed /1 1 0S/{1 1 1} phase must equal the total length of
the initial undeformed wire, i.e.,

l0110 þ
l0001

1þ �tr
¼ l0. (29)

Here, l0001=ð1þ �trÞ is the length of the transformed /1 1 0S/{1 1 1} phase as calculated
from the length of the corresponding /0 0 1S/{1 0 0} phase.
2.
 Force balance

In addition to the above kinematics equations, the stress field in each phase must satisfy
the force balance condition. Specifically,

dsi

dx
¼ 0 in each phase (30)

and

s110A110 ¼ s001A001 at the phase boundary. (31)

Here, si is the axial stress in the wire. For the /1 1 0S/{1 1 1} phase, si ¼ s110; for the
/0 0 1S/{1 0 0} phase, si ¼ s001. A110 is the area of the rhombic cross-section of the
/1 1 0S/{1 1 1} phase, and A001 is the area of the square cross-section of the /0 0 1S/
{1 0 0} phase. Eqs. (30) and (31) imply that the force is continuous within each phase
and across the twin boundary, and the stress is uniform within each phase but not
continuous across the twin boundary because the cross-sectional areas of the two phases
are not the same. Specifically, A1104A001.
3.
 Constrained minimization of strain energies

A system in its equilibrium state has the minimum strain energy. Therefore, we can
obtain the phase-equilibrium state of the wire by minimizing the total strain energy
subject to the force balance and kinematics constraints. The total strain energy of the
wire is composed of the strain energy of each phase and the interface energy, i.e.,

U ¼

Z
V110

u110ð�110ÞdV þ

Z
V 100

u001ð�001ÞdV þU interface. (32)

Note that the strain energy associated with the twin boundary is essentially constant
because the configuration of the coherent twin boundary remains the same during
lattice reorientation. Therefore, the twin boundary energy does not affect the
minimization of the strain energy (until it disappears).
The constrained energy minimization problem can be illustrated by a common tangent
construction between the strain energy density functions of the /1 1 0S/{1 1 1} and
/0 0 1S/{1 0 0} phases in Fig. 9. Points M and N share a comment tangent and, hence,
are in the same stress state because the tangents of strain energy density functions give
the stresses at the corresponding tangent points. Therefore, points M and N have
minimum strain energies subject to the force balance constraints. Consequently,
these two tangent points represent the phase-equilibrium states in a binary phase
system. Note that in order to compare the forces in the two phases, the strain energy
density function of the /0 0 1S/{1 0 0} phase is normalized by the ratio between the
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cross-sectional areas (A110/A001) to account for the difference in the cross-sectional
areas, see Eq. (31).
Eqs. (23)–(32) are the governing equations for a phase-equilibrium state at a given strain
e. Solving these equations numerically yields the elastic stresses (s110 and s001), strains
(e110 and e001), and the length fractions (l110/l and l001/l) in the two phases at the given
strain e. This solution process is repeated for strains from 0 to 0.6 with a stain increment
of 0.01 to obtain the stress and strain states and the length fractions throughout the
transformation process. It is found that the stresses and strains of the two phases are
constant during the lattice reorientation. This can also be seen from the common
tangent construction in Fig. 9. Therefore, the elongation during lattice reorientation
proceeds solely through variations in the length fractions of the two phases, as shown in
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Fig. 10. The length fractions also clearly depict the three deformation stages:

(1) The initial elastic deformation of the single-phase /1 1 0S/{1 1 1} wire (0�es)
corresponds to l110/l ¼ 1 and l001/l ¼ 0. Note that the actual elastic limit is es,
not �0s (see Fig. 1). While es at the yield point corresponds to an unstable state, �0s
corresponds to a phase-equilibrium state predicted by the preceding governing
equations. Although the condition for phase-equilibrium states is first reached
at �0s, phase transformation does not immediately start because of the energy
barrier for dislocation nucleation (discussed later in Section 4.2). The actual
phase transformation begins at es when the stored strain energy is sufficient to
overcome the energy barrier for dislocation nucleation.

(2) The lattice reorientation proceeds under loading (es�ef) through the decrease of
l110/l and increase of l001/l. The total nominal strain at the completion of the
reorientation process (ef) corresponds to the state when l110/l is reduced to zero
(point C in Fig. 1).

(3) The elastic deformation of the single-phase /0 0 1S/{1 0 0} wire (ef�) corresponds to
l110/l ¼ 0 and l001/l ¼ 1.
4.
 Elastic stress component se
With the local stresses obtained from the constrained minimization of strain energies,
the stress component se can be derived from Eq. (21). Specifically, substitution of
Eq. (32) into Eq. (21) yields the elastic stress component se as

se ¼
1

V 0

qU

q�
¼

1

V 0

q
q�
ðV 110u110 þ V 001u001 þU interfaceÞ,

¼
1

V 0
V110

du110

d�110

q�110
q�
þ V100

du001

d�001

q�001
q�

� �
,

¼
V 110

V0

q�110
q�

� �
s110 þ

V 001

V 0

q�001
q�

� �
s001. ð33Þ

Here, V0 ¼ A110l0 is the initial total volume of the wire, V110 ¼ A110l
0
110 and V001 ¼

A001l
0
001 are the volumes of the /1 1 0S/{1 1 1} and /0 0 1S/{1 0 0} phases in the unstressed

states, respectively. In order to calculate qe110/qe and qe001/qe, we consider an infinitesimal
deformation of de. The total deformation increment is equal to the sum of the deformation
increments of the two phases (Eqs. (25)–(28)), i.e.,

ðl0110 þ l0001Þd� ¼ l0110 d�110 þ l0001 d�001. (34)

Also, the two phases must satisfy the force balance condition in Eq. (31), which can be
rewritten as

ds110
d�110

d�110A110 ¼
ds001
d�001

d�001A001. (35)

Equations (33), (34), and (35) combine to give

se ¼ l110s110 þ l001s001, (36)
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where

l110 ¼
l0110
l0

l0110 þ l0001

l0110 þ
A110

A001

� �
ds110
d�110

.
ds001
d�001

� �
l0001

(37)

and

l001 ¼
l0001
l0

l0110 þ l0001
ds100
d�100

.
ds110
d�110

� �
l0110 þ

A110

A100

� �
l0001

. (38)

At the initiation of the lattice reorientation,

l0110 ¼ l0 and l0001 ¼ 0. (39)

Through Eqs. (37) and (38), the above statement implies

l110 ¼ 1 and l001 ¼ 0. (40)

Therefore,

se ¼ s110. (41)

Similarly, at the completion of the lattice reorientation,

l0110 ¼ 0 and l0001 ¼ l0ð1þ �trÞ. (42)

Through Eqs. (37) and (38), this implies

l110 ¼ 0 and l001 ¼ ð1þ �trÞðA001=A110Þ. (43)

Therefore,

sf ¼ ð1þ �trÞðA001=A110Þs001. (44)

From Eq. (31), it can be seen that s110os001 because A1104A001. Therefore, se is at a
minimum value of se ¼ s110 at the initiation of lattice reorientation and a maximum value
of se ¼ ð1þ �trÞðA001=A110Þs001 at the completion of lattice reorientation. Between these
two states, se increases as the low stress /1 1 0S phase gradually transforms into the high-
stress /0 0 1S phase. As will be discussed in the next subsection, the stress component
sdissip is constant during the reorientation. Therefore, this increase of se is the primary
reason behind the increase of s ¼ se+sdissip over the same stage of deformation.

4.3.2. Dissipative twin boundary propagation

The smooth transition between phase-equilibrium states discussed in the preceding
subsection is an ideal process, which is thermodynamically reversible without energy
dissipation. Nonetheless, the actual lattice reorientation is a dissipative process, no matter
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Fig. 11. Twin boundary propagation through dislocation nucleation, glide, and annihilation: (a) a side view of

details of the {1 1 1} twin boundary and the 1
6
f1 1 1gh1 1 2i Shockley partial dislocation and (b) a perpendicular view

of the same {1 1 1} twin boundary and the gliding partial dislocation.
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how slow the transformation occurs. The energy dissipation is due to the ruggedness of the
energy landscape associated with the lattice reorientation. This ruggedness is due to the
propagation of lattice-scale defects (Vainchtein and Rosakis, 1999; Puglisi and
Truskinovsky, 2002; Truskinovsky and Vainchtein, 2003, 2004). Therefore, it is important
to study the detailed lattice-scale transformation mechanism during the twin boundary
propagation and the associated energy landscape.

The twin boundary propagates along the wire axis because the atoms on one side of the
twin boundary undergo a shear deformation relative to atoms on the other side. However,
atoms on one side do not shear simultaneous because the energy barrier for such a uniform
motion is too high. Instead, the shear deformation proceeds through sequential nucleation,
glide, and annihilation of 1

6
h1 1 2i Shockley partial dislocations (Abeyaratne and

Vedantam, 2003), as shown in Fig. 11. Due to the energy barriers for dislocation
nucleation and migration, the strain energy function has a serrated shape with local peaks
ðu0iÞ corresponding to unstable states and local minima (ui) corresponding to metastable
states. The wire is periodically brought to unstable states and then settles into the
metastable states after overcoming the barrier. Specifically, consider a phase-equilibrium
state corresponding to local minimum at Point u1 in Fig. 12(a). At this state, the twin
boundary is an atomically smooth {1 1 1} plane. The twin boundary propagates in a
‘‘stick–slip’’ manner described below (Vainchtein and Rosakis, 1999):
(1)
 Elastic stretching: the strain energy increases along curve u1u
0
2 as the wire is stretched.
(2)
 Dislocation nucleation: the wire becomes unstable when the strain energy increases to
the local energy peak at point u02. A partial dislocation is then nucleated from one sharp
edge (point A in Fig. 11) on the atomic plane adjacent to the twin plane. The atoms at
the nucleation site have lower coordination numbers and thus constitute a weak spot
for dislocation nucleation.
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(3)
 Dislocation glide: after the dislocation is nucleated, the dislocation line (DD0 in Fig. 11)
forms a step on the twin boundary. Hence, the twin boundary is not atomically smooth
any more. The dislocation step line glides along the long diagonal from point A to A0.
Meanwhile, the lattice is relaxed and the strain energy drops precipitously along strain
energy curve u02u2. A more careful analysis would show that the path u02u2 is also
serrated since dislocation glide itself is almost always thermally activated.
(4)
 Dislocation annihilation: the partial dislocation annihilates when it reaches the far edge
of the sample (indicated by A0 in Fig. 11).
Steps (1)–(4) above correspond to the translation of the twin boundary by a single
interplanar distance, leaving the twin boundary atomically smooth again. Meanwhile, the
wire reaches another metastable phase-equilibrium state with local strain energy minimum
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at point u2. As the wire is further stretched, the process described in Steps (1)–(4) repeats.
In each cycle, the wire is brought to an unstable state through elastic stretching and then
settles in a local metastable phase-equilibrium state through dislocation nucleation,
gliding, and annihilation. At the same time, the twin boundary advances by an inter-planar
distance between two neighboring {1 1 1} planes. Consequently, the strain energy curve
exhibits a serrated shape with local minima ui corresponding to metastable states and local
maxima u0i corresponding to unstable states. It is important to note that the dotted line in
Fig. 12(a) illustrates the reversible, smooth transition path between metastable states
governed by the equations in Section 4.3.1. On the other hand, the serrated strain energy
density curve shows the actual change of strain energy density during the deformation.
Each time a dislocation is nucleated and glides across the wire, the strain energy drops
precipitously from the local maximum u0i to minimum ui. At the same time, the strain
energy difference Du ¼ u0i � ui is dissipated as heat (phonons), which is transferred to the
thermal reservoir that maintains the specimen at a constant temperature. During the elastic
stretching described in Step (1), all input energy is stored as strain energy in the wire and
there is no energy dissipation. Therefore, the energy dissipation shows a stepwise increase
with strain, as shown in Fig. 12(b). Without thermal fluctuations, Du is essentially constant
because the energy barriers for dislocation nucleation are the same throughout the lattice
orientation process. Therefore, the total energy dissipation is

Q ¼ V0nDu, (45)

where n is the number of cycles of the dislocation activities described in Steps (1)–(4). The
stepwise change of Q can also be approximated by the straight line (the dotted line in Fig. 12(b)):

Q ¼ V0
n� 0:5

n

Du

D�
� � V0

Du

D�
�, (46)

where De is the strain increment corresponding to one cycle of dislocation nucleation and
annihilation described in Steps (1)–(4). It is essentially constant. Substitution of Eq. (46)
into (22) yields

sdissip ¼
Du

D�
. (47)

sdissip as quantified here is an average measure which is constant throughout the
reorientation process because both Du and De are essentially constant. Moreover, sdissip is
proportional to Du, which is closely related to the energy barrier for dislocation nucleation,
similar to what was described in Section 4.2. The difference is that the dislocation
nucleation discussed in Section 4.2 is associated with the formation of a twin boundary and
is nucleated from a perfect crystal without initial defects. In contrast, the dislocation
nucleation here is associated with the propagation of the twin boundary and is nucleated
nearly at the existing twin boundary. Therefore, the latter has a lower-energy barrier, but
both processes have similar temperature effects. Eq. (17) suggests that less mechanical
work is necessary for dislocation nucleation at higher temperatures because thermal
fluctuations facilitate overcoming the energy barrier. Therefore, Du and sdissip are smaller
at higher temperatures, as shown in Fig. 13. This indicates that less mechanical work is
necessary to move the twin boundary as the temperature increases.
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4.4. Elastic deformation of the /0 0 1S/{1 0 0} phase

At the completion of the lattice reorientation, the wire is transformed into a single
/0 0 1S/{1 0 0} phase. The subsequent deformation is purely elastic and no energy
dissipation occurs. Therefore, all of the input mechanical work is stored in the wire as
strain energy, i.e.,

W ¼ U001. (48)

Eqs. (12) and (48) specify the stress–strain relation for this stage as

s ¼
1

V0

qU001

q�001
¼

qu001

q�001
, (49)

where u100 is the strain energy density of the single-phase /0 0 1S/{1 0 0} wires in Fig. 6
and e100 is the strain measured relative to the unstressed state of the /0 0 1S/{1 0 0} phase.
As previously mentioned, the reference state for nominal strain e is the unstressed state of
the /1 1 0S/{1 1 1} phase. We know that, if the length of the unstressed /1 1 0S/{1 1 1}
phase is l0110, the length of the corresponding /0 0 1S/{1 0 0} phase is l0110ð1þ �trÞ. Hence,
since e ¼ ef at the beginning of the elastic deformation of the /0 0 1S/{1 0 0} wire, the
relation between e and e001 is

� ¼ �f þ �001ð1þ �trÞ. (50)

The present analysis provides a prediction for the stress–strain relation of the initially
/1 1 0S/{1 1 1} nanowire, including all three deformation stages (pure elastic deformation
of the /1 1 0S/{1 1 1} and /0 0 1S/{1 0 0} phases and the lattice reorientation).
Putting these together, we obtain a complete piecewise smooth model for the stress–strain
behavior of metal nanowires under the conditions of isothermal quasi-static tensile
deformation.
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5. Comparison to MD simulations

5.1. MD simulation methods

In order to verify the model derived above, we performed a series of MD simulations to
obtain the stress–strain behavior of Cu nanowires under the conditions of isothermal
quasi-static tensile deformation. An embedded-atom-method (EAM) interatomic potential
for Cu (Mishin et al., 1999, 2001) is used. Uniaxial displacement-controlled tensile loading
are applied under simulated quasi-static conditions (Gall et al., 2004). Specifically, in each
load step, all of the atoms are first displaced according to a prescribed uniform engineering
strain increment of 0.125% in the length direction. The wires are then equilibrated with
their ends fixed at constant temperature for 15 picoseconds (ps) to obtain a macroscopic
equilibrium configuration at the prescribed strain. This relaxation process allows structural
changes to occur, if the conditions so dictate. This process usually takes less than 12 ps and
the average stress over the last 3 ps of the relaxation period at each load step is taken as the
stress in the wire at the current strain. The wire is stretched till fracture occurs.

The preceding continuum model requires the strain energy density functions for the pure
/1 1 0S/{1 1 1} and /0 0 1S/{1 0 0} phases as inputs. These strain energy functions can be
obtained by either MD simulations or the analytical methods described in Section 3.2,
provided that the bulk elastic constants and surface stresses are known. Here, the strain
energy density functions are obtained by performing elastic deformations of the materials
using MD simulations. Specifically, two unit cells are created out of perfect bulk lattice
with the same cross-sections as the corresponding phases in a wire of interest. Periodic
boundary conditions are applied in the axial directions. First, the unit cells are relaxed
under zero traction (x and y directions) and zero stress (z direction) conditions. Due to the
tensile surface stress, the unit cells contract in the axial direction and reach self-equilibrium
states, as discussed in Section 3.2. Subsequently, the previously described displacement-
controlled tensile loading is applied to the unit cells until yielding occurs. Suppose there are
n atoms in a unit cell and the total internal energy of the unit cell obtained from MD
simulations is Ui at a given temperature and suppose the total energy per atom in the bulk
is ub at the same temperature, the total strain energy of the unit cell is

U ¼ Ui � nub. (51)

Application of Eq. (51) at each step allows the strain energy functions for the /1 1 0S/
{1 1 1} and /0 0 1S/{1 0 0} pure phases within the elastic regime to be obtained.

These strain energy functions are used in the continuum model described in Section 4.
The model predictions are compared with the results of MD simulations for wires of
different sizes at different temperatures. The model predictions show excellent agreement
with the results of MD simulations. They not only capture the major characteristics of the
unique behavior due to lattice reorientation, but also account for the effects of size and
temperature on the behavior.

5.2. Temperature effect

The elastic behaviors of single-phase wires are nearly independent of temperatures (the
elastic constants are weakly temperature-dependent). As shown in Fig. 14, the strain
energy density functions and stress–strain curves essentially coincide with each other
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within the temperature range considered (100–300K). However, the results of MD
simulation show that lattice reorientation is temperature-dependent. Specifically, both the
yield stress sy and the stress during lattice reorientation process decrease as temperature
increases. This temperature effect can be explained by the model.
Consider the two components of the stress during transformation se (associated with the

phase-equilibrium states) and sdissip (associated with energy dissipation). Since se is
primarily determined by the elastic behavior of the two pure phases (Section 4.3.1), it is
essentially independent of temperature (see Table 1) because the elastic behaviors of
the pure phases are nearly temperature-independent over the temperature range examined
here.
The effect of temperature on the wires’ transformation behavior primarily comes from

the temperature dependence of sdissip. Specifically, sdissip is lower at higher temperatures
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Table 1

Continuum model parameters for a 1.96� 1.96 nm Cu nanowire at different temperatures

Temperature (K) es sy (GPa) e110 s110 (GPa) ef e100 s100 (GPa) sdissip (GPa)

100 0.073 6.62 0.0119 1.82 0.46 0.0322 2.29 0.9

200 0.061 6.01 0.0112 1.80 0.457 0.0306 2.26 0.8

300 0.059 5.41 0.0116 1.81 0.459 0.0317 2.29 0.6
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because thermal fluctuations facilitate overcoming the energy barrier for dislocation
nucleation. For the same reason, the yield stress is lower at higher temperatures. As
shown in Fig. 15, the model accurately predicts the behavior of a /1 1 0S/{1 1 1} Cu
nanowire with a lateral size of 1.96� 1.96 nm over the entire range of temperature
considered.
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5.3. Size effects

Due to the higher surface-to-volume ratios, smaller wires have higher strain energy
densities in the self-equilibrated states, as shown in Fig. 16(a). For the same reason, smaller
wires are stiffer than larger wires, which can be seen from the stress–strain relations in
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Table 2

Continuum model parameters for Cu wires of different sizes at T ¼ 300K

Wire size (nm) es sy (GPa) e110 s110 (GPa) ef e100 s100 (GPa) sdissip (GPa)

1.52� 1.52 0.059 6.52 0.0112 2.20 0.459 0.0322 2.68 1.3

1.96� 1.96 0.059 5.41 0.0116 1.81 0.459 0.0317 2.29 0.7

2.41� 2.41 0.052 4.60 0.0088 1.35 0.449 0.0247 1.74 0.6
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Fig. 16(b). The results of the MD simulations on single-phase wires are consistent with
those obtained experimentally and through first principle calculations (Dingreville et al.,
2005). Similarly, there are significant size effects in the behavior of /1 1 0S/{1 1 1} wires
with lattice reorientation. Specifically, both the yield stress sy and the stresses during lattice
reorientation decrease with increasing wire size, as shown in Table 2 and Fig. 17. The
model predictions show excellent agreement with the MD simulation results for wires of
different sizes. Moreover, the model provides a concrete explanation of why this behavior
is size-dependent.
First, the size dependence of sy is primarily due to the surface-stress-induced compres-

sive stress in the core of the wire without external loading, as discussed in Section 3.2.
Under tensile loading conditions, the externally applied stress first needs to overcome the
internal compressive stress and then cause yielding (Diao et al., 2004b; Gall et al., 2004).
Since the magnitude of the surface-stress-induced compressive stress decreases with
increasing wire size, the overall tensile yield stress decreases with increasing wire size.
Second, the stress component se at phase-equilibrium is primarily determined by the

elastic properties of the single-phase wires. Since both /1 1 0S/{1 1 1} and /0 0 1S/{1 0 0}
single-phase wires are stiffer at smaller sizes, se is higher in smaller wires. On the other
hand, according to Eq. (47), sdissip is proportional to Du ¼ DU/V0, where DU is the energy
dissipated during the nucleation, propagation and annihilation of a single partial
dislocation. In bulk materials, energy dissipation may depend on the path a dislocation
travels, because the dislocation interacts with defects such as other dislocations, voids,
interstitials, or grain boundaries. The small nanowires here are defect-free other than the
single propagating dislocation at hand. As a result, DU is the energy difference
corresponding to a peak and a valley on the strain energy curve in Fig. 12(a). This
difference is associated only with the structure of the single dislocation and is therefore
essentially independent of the size of the wire. Since DU is the same in wires of different
sizes, sdissip is inversely proportional to the wire volume. Hence, sdissip is higher in smaller
wires due to smaller volumes. Therefore, the stress during lattice reorientation decreases
with increasing wire sizes because both se and sdissip decrease with increasing wire sizes.

6. Conclusions

Our previous research revealed that single-crystalline metal (Cu and Ni) nanowires show
a novel SME and pseudoelastic behavior due to a reversible lattice reorientation driven by
the high surface-stress-induced internal stress at the nanoscale. In this study, a continuum
model is developed to characterize the tensile behavior of these shape memory metal
nanowires with a focus on the unique lattice reorientation. Specifically, the lattice
reorientation initiates when the /1 1 0S/{1 1 1} wire reaches its elastic limit and a
dislocation is nucleated. Two factors combine to determine the deformation mechanism
and the nucleation event. First, there are two competing slip systems under the loading
condition: /1 1 1S/{1 1 0} and {1 1 1}//1 1 2S, associated with the nucleation of a full
dislocation and a Shockley partial dislocation, respectively. A CRSS analysis shows that
the {1 1 1}//1 1 2S slip systems are more favorable. The Schmid factor for the {1 1 1}/
/1 1 2S slip system is larger than the zero Schmid factor associated with the {1 1 1}/
/1 1 0S slip system (the loading direction is perpendicular to the Burgers vector of the full
dislocation). Second, atoms at the sharper inter-facet edges constitute a weaker spot for the
nucleation of a partial dislocation. After partial dislocation nucleation, the partial glides
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across the wire and forms a coherent twin, separating the /1 1 0S/{1 1 1} phase and the
new /0 0 1S/{1 0 0} phase. The twin boundary propagates along the wire axis as the lattice
reorientation proceeds.

Relying upon the first law of thermodynamics, we have decomposed the lattice
reorientation process into two parts: a reversible smooth transition between metastable
phase-equilibrium states and an irreversible, dissipative twin boundary propagation
process. The smooth transition between static metastable states is modeled within the
framework of strain energy functions with multiple local minima. Specifically, at any given
strain, the wire adopts the configuration with minimum strain energy while the kinematics
constraints and force balance are satisfied. Numerical results show that the stress and
strain states in either phase are constant during lattice reorientation. Hence, the elongation
of the wire is solely accommodated by the transformation from the /1 1 0S/{1 1 1} to the
/0 0 1S/{1 0 0} phase. The force is continuous within each phase and across the phase
interface. However, the stresses in the two phases are not the same because of the different
cross-sectional areas. The slow increase of the total stress during lattice reorientation is due
to the increase of the volume fraction of the higher-stress phase.

The dissipative nature of the lattice reorientation is due to the ruggedness of the strain
energy curves associated with dislocation nucleation, glide, and annihilation during twin
boundary propagation. Each time a dislocation is nucleated and annihilated, the difference
in the strain energies between the unstable state and phase-equilibrium state is dissipated.
The energy dissipation increases proportionally to the total strain. Therefore, the stress
component associated with dissipation is constant at a given temperature. Its magnitude is
lower at higher temperatures because thermal fluctuations facilitate dislocation nucleation.

The model captures the major characteristics of the unique behavior due to lattice
reorientation and accounts for the size and temperature dependences, yielding results that
were shown to be in excellent agreement with the results of MD simulations. The
temperature dependence primarily arises from the fact that thermal fluctuations facilitate
overcoming the energy barriers for dislocation nucleation. Therefore, the yield stress and
the transformation stress during lattice reorientation decrease with increasing temperature.
The size dependence of the yield and lattice reorientation stresses is primarily associated
with the size dependence of the elastic behaviors of the two single-phase wires. For both
/1 1 0S/{1 1 1} and the /0 0 1S/{1 0 0} wire configurations, smaller wires are stiffer.
Therefore, the yield stress and the transformation stress during lattice reorientation
decrease with increasing wire sizes.
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