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Abstract

A novel pseudoelastic behavior was recently discovered in [0 1 1̄ 0]-oriented ZnO nanowires under uniaxial tensile

loading and unloading. This behavior results from a reversible transformation from the parent wurtzite (WZ) structure to a

previously unknown graphitic structure (HX) and is associated with recoverable strains up to 16%. In this paper, a

micromechanical continuum model is developed to characterize this behavior. Using the first law of thermodynamics, the

model decomposes the transformation into an elastic process of structural transitions between WZ and HX through a

sequence of thermodynamically reversible phase equilibrium states and a thermodynamically irreversible process of

interface propagation. The elastic equilibrium transition process is modeled with strain energy functions of the two

constituent phases which are obtained from independent molecular dynamics calculations. The dissipative interface

propagation process is modeled phenomenologically with a function which relates dissipation to the interfacial area

between the two phases. The model captures major characteristics of the behavior of wires with lateral dimensions between

20 and 40 Å over the temperature range of 100–500K.

r 2008 Published by Elsevier Ltd.
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1. Introduction

Tetrahedrally bonded semiconductors such as ZnO, GaN, and SiC with a degree of covalency are normally
brittle with fracture strains of at most 0.01–0.03% at the macroscale. However, as the characteristic size scale
of the materials decreases to submicrons or nanometers, as in slender 1D structures such as nanowires and
nanorods, a transition from the normally brittle behavior with small failure strains to a pseudoelastic response
is observed (Kulkarni et al., 2006, 2007). Underlying this transition are novel kinematically reversible phase
transformations previously unknown in bulk materials. For example, ZnO nanowires with the [0 1 1̄ 0] growth
orientation were recently found to exhibit a pseudoelastic behavior with recoverable strains up to 16%. This
behavior results from a phase transformation from wurtzite (WZ) to a graphitic phase (HX) (Kulkarni et al.,
2007). Similarly, ZnO nanowires with the [0 0 0 1] growth orientation can undergo another phase
e front matter r 2008 Published by Elsevier Ltd.
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transformation from wurtzite to a previously unknown body-centered-tetragonal phase (BCT-4) and
deform to strains up to 17% (Wang et al., 2007b). These phenomena are unique to the nanoscale and are
not observed in bulk ZnO. The reversibility of the transformations endows the nanowires with large
recoverable strains. The nearly defect-free nature of these nanowires and their large surface-to-volume ratios
give rise to high atomic mobility and the ability to undergo significant deformations discussed here without
fracture.

It is worth noting that the above phenomena echo similar discoveries in other slender 1D nanomaterials.
Experiments revealed that Au nanowires can be pseudoelastic (Landman et al., 1996). Recently, single
crystalline nanowires of Cu, Au, and Ni were shown to possess a novel shape memory effect (SME) and an
underlying pseudoelasticity which do not exist in bulk (Liang and Zhou, 2005, 2006; Liang et al., 2005; Park
et al., 2005). Pseudoelasticity with recoverable strains up to 15% has also been observed in carbon nanotubes
(Yakobson et al., 1996). These pseudoelastic behaviors are similar in phenomenology. The responsible lattice
level deformation mechanisms, however, can be different for different materials. For example, in the metal
nanowires lattice reorientation within the FCC crystalline structure and a twin boundary propagation process
are responsible. The driving force is the difference in surface energy and the anisotropic elastic response of the
FCC lattice in the [1 1 0] and [0 0 1] directions. In [0 1 1̄ 0]-oriented ZnO nanowires, the driving force is
primarily due to the difference in chemical free energies between the WZ and HX crystalline structures,
although surface energy difference between the WZ and HX wire configurations also plays a role. In both
cases, an energy barrier exists between the parent (initial) and target (transformed) configurations. Also, clear
size and temperature dependence of behavior exists in both cases because of surfaces. In this paper, our
interest is on ZnO nanowires with the [0 1 1̄ 0] axial orientation. The objectives are (1) to develop a constitutive
model that captures both the pseudoelastic behavior and the intrinsic dependence of the behavior on size and
temperature, (2) to provide a quantification of the behavior through the model, (3) to use this model to
delineate and analyze the reversible (elastic WZ2HX transformation) and irreversible (dissipative interface
propagation) processes responsible for the novel pseudoelastic behavior at the nanoscale, and (4) to quantify
the contributions of constituent elasticity, interface energy, and dissipation to the overall constitutive behavior
of the nanowires.

Fig. 1(a) illustrates the WZ and HX crystalline structures involved in the transformation of [0 1 1̄ 0]-oriented
ZnO nanowires (Kulkarni et al., 2006). The corresponding response of a nanowire with a 40.81 Å� 39.89 Å
cross-section at 100K obtained from molecular dynamics (MD) simulations is shown in Fig. 1(b). The
pseudoelastic response can be considered as consisting of the following eight stages outlined schematically in
Fig. 1(c):
(1)
 A-B: elastic deformation of the WZ-structured wire;

(2)
 B-C: initiation of the WZ-to-HX phase transformation entailing a precipitous drop in stress;

(3)
 C-D: propagation of the phase boundary from HX regions into WZ regions, with point D corresponding

to the completion of the transformation;

(4)
 D-E: elastic deformation of the HX-structured wire;

(5)
 E-F: elastic unloading of the HX-structured wire, which continues beyond the point of initial

transformation completion (D).

(6)
 F-G: initiation of the reverse (HX-to-WZ) transformation with an increase in stress;

(7)
 G-H: progression of the reverse transformation through the propagation of the phase boundary from

WZ regions into HX regions, culminating in the reversion of the entire wire back to the WZ structure at
point H;
(8)
 H-A: elastic unloading of the WZ-structured wire.
The response, including the elastic deformations of the two phases and a contribution from the
transformation, illustrates the nanowires’ ability to undergo large deformations with recoverable strains up to
16% (Kulkarni et al., 2007). This is quite extraordinary since ionic compound semiconductors such as ZnO,
GaN, InN, and BN are normally brittle. Such large recoverable strains and property variations associated
with the transformation make these nanowires ideal candidates for nanocomponents in a variety of nano-
electro-mechanical systems (NEMS), such as sensors, actuators, and switches. Since this novel response has
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Fig. 1. (a) Crystalline structures of the parent WZ and transformed HX phases, (b) the response of a [0 1 1̄ 0]-oriented nanowire under

quasistatic tensile loading and unloading as obtained by MD simulation, and (c) a schematic illustration of the stages of deformation

in (b).
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only been discovered recently, the overall constitutive behavior including the driving force for the
transformation, energy barriers for phase nucleation and the effects of size and temperature has not been
quantified and analytically described.

In what follows next, a constitutive model for this pseudoelastic behavior accounting for all the deformation
stages outlined above is developed. The micromechanical approach of Liang et al. (2007) originally used to
model the pseudoelastic behavior of shape memory FCC metal nanowires is adopted. This framework focuses
on the thermodynamic relations among the internal energies of the phases, dissipation and external work
during loading and unloading. The total energy of a nanowire is expressed as the sum of the internal energies
of the pure phases and the energy of the interface between the phases. This expression allows the elastic
deformations before and after the forward and reverse transformations (A-B, D-E, E-F, and H-A) and
the elastic (equilibrium) part of the transformation processes (B-C-D and F-G-H) to be characterized.
The internal energies of the WZ and HX phases are obtained from MD calculations. The energy of the
interface is quantified phenomenologically as a function of the total interfacial area which in turn is assumed
to be a function of the volume fractions of the WZ and HX phases. Within this framework, the total energy
depends on three independent variables which are the strain in the WZ phase relative to its equilibrium state
(e1), the strain in the HX phase relative to its own equilibrium state (e2), and the volume fraction of the HX
phase (f). At any given level of the overall deformation of a wire, these microscopic independent variables are
determined by the requirement that the total energy of the wire is minimized. Similar to the strain energy of
the interface, the dissipative part of the transformation process associated with the propagation of the
interface is also accounted for phenomenologically, through a functional form involving the volume fraction
of the HX phase as the independent state variable. The underlying assumption is that energy dissipation
associated with the propagation of the interface between the HX and WZ phases is proportional to the total
interface area. Overall, the first law of thermodynamics allows the external stress required to effect the
deformation of the wire to be obtained as the sum of the stress associated with the elastic process of
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equilibrium transition and the stress required to drive the dissipative propagation of the interface between the
WZ and HX phases.
2. Background

Micromechanical models which couple micromechanics and thermodynamics principles have traditionally
been used to describe the constitutive behaviors of shape memory alloys or SMAs (Muller and Xu, 1991). Such
models are based on the existence of a non-convex free energy function which reflects the possibility of phase
transformations (Huo and Muller, 2003). This framework has been successfully used to study martensitic
transformations in SMAs whose strain energy functions have multiple local minima (Abeyratne and Knowles,
1993; Abeyratne and Kim, 1994; Abeyratne and Bhattacharya, 2001). However, kinetic laws (which are
required in fully dynamic analyses) that relate driving force and interface motion which dictate dissipation are
extremely difficult to obtain and pose a practical obstacle to the use of such models. Alternatively, the
behavior can be modeled by decomposing the response into a process of transitions between static equilibrium
states and a process of interface propagation, such that the overall dissipation is captured phenomenologically
in an averaged sense and the details of the kinetic processes are not resolved. Liang et al. (2007) successfully
applied this approach to the modeling of the pseudoelastic behavior of FCC metal nanowires. Since the
transformation process during loading modeled thereof occurs through the propagation of a single twin
boundary, the structure and size of the interface between the phases remain constant. Consequently, the
interfacial energy remains constant and therefore does not contribute to the overall stress. However, in
general, both the structure and size of the interference between the parent and target phases change during the
transformation (Huo and Muller, 2003), as is the case of the ZnO nanowires analyzed here or even during
unloading of the FCC nanowires analyzed by Liang et al. (2007). In such cases, the evolution of interfacial
energy has to be explicitly considered. The approach developed by Muller and Xu (1991) considers the
interface as one continuous surface with a certain amount of interface energy. A further assumption is that the
contribution of the interface to the total free energy of the system is proportional to the area of the interface
and can be regarded as a function of the volume fractions of the phases. This approach was used to
characterize the pseudoelasticity and hysteretic dissipation of a CuZnAl alloy and also for modeling the
loading–unloading behavior of a CuAlNi alloy (Musolff and Sahota, 2004). A finite strain version of the
model has been developed to characterize the response of a NiTi alloy (Muller and Bruhns, 2006).

Here, a combination of the approaches developed by Muller and Xu (1991) and Liang et al. (2007) is used to
model the behavior of the ZnO nanowires. The transformation is decomposed into an elastic process of
structural transitions between WZ and HX through a sequence of phase equilibrium states (PES) and a
dissipative process of interface propagation. The elastic equilibrium transition process is modeled using strain
energy functions with multiple local minima. The dissipative nature of the interface propagation process is
related to the ruggedness of the energy landscape associated with elastic energy storage and release during
interface motion.
3. Computational framework

The MD simulations carried out use the Buckingham potential with charge interactions (Binks and Grimes,
1993; Wolf et al., 1999). The nanowires considered are single-crystalline and wurtzite-structured, with lattice
constants a ¼ 3.249 Å and c ¼ 5.206 Å, and a growth direction along the [0 1 1̄ 0] crystalline axis (Wang,
2004a, b, c). The wire structure is generated by repeating a wurtzite unit cell along the [2 1̄ 1̄ 0], [0 0 0 1], and
[0 1 1̄ 0] directions. Three different cross-sectional sizes (21.22� 18.95, 31.02� 29.42, and 40.81� 39.89 Å) are
considered. The smallest cross-sectional size (21.22� 18.95 Å) is chosen such that the short range cutoff
distance in the Buckingham potential (Binks and Grimes, 1993; Wolf et al., 1999) is smaller than the smallest
wire dimension and long-range interactions are properly considered (Kulkarni et al., 2005). Periodic boundary
conditions are specified in the axial direction with a computational cell length of 150.83 Å for all the cross-
sections analyzed (Kulkarni and Zhou, 2006a, b). The analyses are carried out at three temperatures (100, 300,
and 500K) to quantify the effect of temperature on the behavior.
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Since the crystallographically constructed nanowires may not be in equilibrium, pre-loading relaxations are
carried out for 3 ps to obtain the wires’ free-standing configurations. Following the initial relaxations, a quasi-
static loading scheme is employed to effect tensile deformation and to obtain the mechanical response of the
nanowires. Approximate quasi-static tensile loading in each deformation increment is achieved through
successive loading and equilibration. Specifically in each deformation increment, stretching at a specified rate
of 0.005/ps is first carried out for 0.5 ps using a modified version of the NPT algorithm of Melchionna et al.
(1993) and Spearot et al. (2005). Subsequently, with the strain maintained constant, the nanowire is relaxed for
3 ps via an algorithm for NVE ensemble (Haile, 1997) at the specified temperature. Since the loading proceeds
in a series of equilibration steps, this process essentially simulates quasi-static loading of the specimen.
Unloading is implemented in a similar manner with a reduction in strain for each unloading step. More details
of the MD simulations can be found in Kulkarni et al. (2006, 2007) and Wang et al. (2007a).
4. Thermodynamics of loading and unloading

The process of elastic transition between equilibrium WZ and HX states is thermodynamically reversible
and the process of interface propagation is thermodynamically irreversible. The reversible process involves the
continuous evolution of the volume fractions of the phases with the overall strain and converts part of the
mechanical work from the applied stress into bulk and interfacial strain energy. The irreversible process
accounts for the dissipation associated with overcoming the energy barrier between the WZ and HX states as
the transformation progresses through the propagation of the interfaces between the WZ and the HX regions.

The first law of thermodynamics relates the change in internal energy, work input and dissipation as

dW ¼ dU þ dQ, (1)

where dW is the work done by applied loading, dU is the change in internal energy in the nanowire, and dQ is
the energy dissipated in the form of heat exchange. During the loading and unloading of single-phase
nanowires (A-B, D-E, E-F, and H-A in Figs. 1(b) and (c)), there is no dissipation (i.e., dQ ¼ 0). Hence,

dW ¼ dU . (2)

However, when phase transformation occurs (B-C-D and F-G-H in Fig. 1(b) and (c)), |dQ|40.
Table 1 gives the signs of the three thermodynamic quantities. In this convention, work done on the system

and heat dissipated (flowing out of the system) are considered positive and vice versa. During loading, external
work dW is positive and part of it goes toward increasing the strain energy dU and part of it is dissipated as
heat dQ. The relation can be written as

jdW j ¼ jdU j þ jdQj. (3)

During unloading, the strain energy in the nanowire decreases. Part of the decrease is expended on
providing work to the surroundings and part of it is dissipated as heat. The relation is

jdW j ¼ jdU j � jdQj. (4)
Table 1

Signs of mechanical work, internal energy, and dissipation during loading and unloading

dW dU dQ

Loading (WZ-HX) + + +

Unloading (HX-WZ) � � +
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4.1. Macroscopic stress and strain

The total mechanical work is

W ¼ V0

Z �

0

sd�, (5)

where s and e are the macroscopic stress and strain, respectively, and V0 is the volume of the undeformed WZ
wire. Here, the macroscopic strain e is the nominal engineering strain relative to the undeformed WZ wire and
is calculated as

� ¼
DL

L0
, (6)

with DL being the overall length change of the wire and L0 being the length of the unstressed WZ wire. The
total stress s in the wire is

s ¼
1

V 0

qW

q�
. (7)

Thus, the stresses during loading and unloading are, respectively,

sL ¼
1

V0

dU

d�
þ

1

V 0

dQ

d�
¼ sc þ sd; during loading and

sU ¼
1

V 0

dU

d�
�

1

V 0

dQ

d�
¼ sc � sd; during unloading: (8)
5. Elastic part of the behavior

5.1. Total internal energy

The framework used here is that developed by Muller (1989), Muller and Xu (1991), Raniecki and
Lexcellent (1994, 1998), and Hirsinger et al. (2004). In the following discussions, subscripts 1 and 2 refer to the
WZ and HX phases, respectively. The total internal energy of the system is expressed as the sum of the internal
energy of WZ (U1), the internal energy of HX (U2), and the energy of the interface between the two phases
(Uint). Specifically, the total energy of the system is

U ¼ U1 þU2 þU int. (9)

The internal energy of the pure phases in the phase mixture can be written as

Up ¼ U1 þU2 ¼ u1V
0
1 þ ~u2V

0
2, (10)

where u1 is the energy density of the WZ phase reckoned over the ‘‘undeformed’’ volume ðV 0
1Þ of the WZ phase

at zero stress and ~u2 is the energy density of the HX phase reckoned over the hypothetical free volume of the
HX phase ðV 0

2Þ at zero stress accounting for the volumetric change associated with the WZ-HX
transformation. Specifically,

u1 ¼
U1

V0
1

and ~u2 ¼
U2

V 0
2

. (11)

At a given level of macroscopic strain e, the total current volume of the wire is V and the current volumes of
the WZ and HX regions are V1 and V2, respectively. For the purpose of formulating a consistent theory, it is
illustrative to define the volumes V0

1 and V 0
2 which the WZ and HX regions of the wire would assume,

respectively, if they were unloaded to zero stress with the current phase boundary held unchanged (i.e.,
unloading without reverse phase transformation). For WZ, this imagined unloading is physically possible and
simply involves the recovery of the elastic deformation. For HX, this imagined unloading is not possible since
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the HX structure does not exist at zero stress. Here, V0
2 is defined through

V0
2 ¼ V0

1ð1þ xÞ, (12)

where x represents the volumetric strain associated with the WZ-HX phase transformation. This volumetric
strain changes slightly with wire size and temperature and is x ¼ �4.3% for a 40.81� 39.89 Å wire at 100K.
For the wire size and temperature ranges analyzed, x is found to be between �1.6% to �4.3%. Note that the
definition in Eq. (12) is rather an instrument that facilitates the formulation of relevant quantities (energy
densities, in particular) relative to fixed reference states. With the above definitions, the expression in Eq. (10)
can be written as

Up ¼ u1V
0
1 þ u2

V0
2

ð1þ xÞ
; u2 ¼

U2

V0
1

. (13)

In the above relations, the energy densities of both phases are referred to the undeformed volume of WZ. It
should be pointed out that the specific values of x and its size- and temperature-dependencies are implicitly
accounted for in the MD calculations that yield u1 and u2 directly for each set of conditions.

During the transformation, conservation of mass dictates that the sum of the masses of the two phases be
equal to the total mass of the nanowire, i.e.,

M1 þM2 ¼M, (14)

where M1 ¼ r1V
0
1 and M2 ¼ r2V

0
2 are the masses of the WZ and HX phases, respectively, M ¼ r1V

0 is the
mass, and V0 is the volume of the unstressed WZ nanowire. r1 and r2 are the densities of WZ and HX,
respectively. Since the mass of the HX phase can also be expressed as

M2 ¼ r1
V 0

2

1þ x
. (15)

Eq. (14) reduces to

V0
1 þ

V0
2

1þ x
¼ V 0. (16)

This states that the sum of the volumes of the untransformed WZ phase and the transformed HX phase
referred to its equivalent volume in the WZ state are equal to the original undeformed volume of the wire.
Eq. (16) can also be written as

V0
1

V0
þ

V 0
2

V 0ð1þ xÞ
¼ 1, (17)

where the terms on the left-hand side represent the volume fractions of the WZ and HX phases, respectively.
Eqs. (13) and (17) combine to give the total strain energy density of the pure phases (up) as

up ¼ ð1� f Þu1 þ fu2, (18)

where f ¼ V 0
2=½V

0ð1þ xÞ� is the volume fraction of the HX phase.

5.2. Internal energy of WZ and HX phases

The internal energy densities of the WZ- and HX-structured nanowires (u1 and u2) as functions of their
respective strains are critical in the modeling of the phase transformation, since they determine the relative
stability of the two phases and the evolution of the transformation. In nanowires, the internal energy depends
not only on the bulk structure and deformation but also on surface orientations and surface energies. Due to
the high surface-to-volume ratios, surface energy constitutes a major portion of the total configurational
energy. The surface energy and the internal energy of a nanowire are functions of wire size. This phenomenon
is different from what is the case for bulk materials whose internal energy depends solely on strain. In
addition, it is useful to note that the internal energy does not vanish at zero strain (or zero stress). Here, the
strain is defined relative to the equilibrium bulk state. As shown by Sander (2003), the surface energy curve has
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a positive slope at zero surface strain, indicating that the minimum surface energy occurs at a compressive
surface strain. This is a consequence of the reduced charge transfer and imbalance of ionic forces on surfaces
where atoms have fewer neighbors relative to those in the core. As a result, WZ-structured nanowires undergo
relaxation through surface reconstruction and adjustment of interior lattice spacing, leading to lower overall
configurational energy. In this paper, this relaxed state is taken as the reference state. The strain in the WZ
structure (e1) defined with respect to this reference state is

�1 ¼
l1 � l01

l01
, (19)

where l1 and l01 are the current and reference lengths. For the HX phase, special considerations similar to those
in the definition of V 0

2 are required. Since HX does not exist at zero stress, the strains in the HX phase are
defined relative to the reference length of

l02 ¼ l01ð1þ ZÞ. (20)

Here, Z is the longitudinal strain associated with the WZ-to-HX transformation and, according to MD
calculations, has values in the range of 2.3–4.3% for the wire sizes and temperatures analyzed. With the
reference state, the strain in HX is defined as

�2 ¼
l2 � l02

l02
. (21)

The internal energy density of each phase is expressed as

ui ¼ u0
i þ u�i ð�iÞ; i ¼ 1; 2. (22)

Here, u0
i is the energy of formation, u�i ð�iÞ is the strain energy density, and ei is the strain of the ith phase. The

formation energy depends on temperature and the elastic constants are functions of both temperature and
strain.

The one-dimensional nature of the wires and the uniaxial tensile loading permit the use of 1D internal
energy functions. For each phase, the strain energy density at each wire size and each temperature is obtained
through MD calculations. The strain energy functions thus developed account for the effects of temperature
and size (through explicit inclusion of surfaces in the MD model), allowing the size- and temperature-
dependence of wire responses to be analyzed. Fig. 2 shows the internal energy densities of WZ and HX
structures for a 40.81� 39.89 wire at 100K. The formation energies of the two phases are indicated. Note that
the formation energy of WZ is lower than that of HX, consistent with the fact that WZ is the natural state of
the wires at 100K without external loading.
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5.3. Interfacial energy

Interfacial energy includes contributions from the formation energy of the interface, elastic misfit of the
phases and elastic interactions of neighboring domains. Its accurate evaluation is somewhat complicated and
various methods have been proposed in the literature (Gall et al., 2000; Muller and Bruhns, 2006), primarily
due to complex geometry and anisotropy. Here, the phenomenological approach developed by Muller and Xu
(1991) is adopted. Specifically, the interfacial energy density is written as

uint ¼
U int

V 0
¼ 4f ð1� f Þum

int, (23)

where um
int is the maximum value when the wire is evenly divided by the WZ and HX phases (f ¼ 0.5).

Obviously, 4f ð1� f Þ ¼ uint=um
int ¼ Sint=Sm

int denotes both the normalized interfacial energy uint=um
int and the

normalized interfacial area Sint=Sm
int (Muller and Xu, 1991). Here, Sint is the interfacial area at a prescribed

value of macroscopic strain e and Sm
int is its corresponding maximum value at f ¼ 0.5. Note that uint vanishes at

f ¼ 0 and 1. One underlying assumption of Eq. (23) is that the orientation dependence of interfacial energy is
negligible and the interfacial energy is only a function of the interfacial area. Fig. 3 provides a comparison of
the model prediction and the MD result of uint=um

int as a function of strain for a 40.81� 39.89 Å wire at 100K.
A very good agreement is seen between the model prediction and the MD data. The part of the profile from
the model between e ¼ 0.04 and 0.072 is not physical and not observed in MD since the model does not
account for the energy barrier for the WZ-to-HX transformation. More discussion on this will be given in
Section 6.

5.4. Constrained energy minimization

The total internal energy density resulting from Eq. (9) is

u ¼ ð1� f Þu1 þ fu2 þ 4f ð1� f Þum
int. (24)

The macroscopic strain e includes contributions from the elastic strains in the phases (e1 and e2) and the
transformation strain (Z) and can be obtained by invoking the rule of mixture as

� ¼ ð1� f Þ�1 þ f �2 þ f Z. (25)

Obviously, in Eq. (24), the independent state variables are e1, e, and f. At any given level of macroscopic
strain e, minimization of the total energy density in Eq. (24) under the constraint of Eq. (25) yields the
equilibrium condition that defines the equilibrium state (specified by e1, e2, and f) of the transforming
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nanowire. When carried over the entire range of e, this constrained minimization process yields the full
equilibrium path for both the forward WZ-to-HX and the reverse HX-to-WZ transformations. The
equilibrium transformation path so obtained for the 40.81� 39.89 Å wire at 100K as measured by f as a
function of e is shown in Fig. 4. Initially for eo0.04, f ¼ 0 and the wire exists solely in the WZ phase. At
� ¼ �̂s ¼ 0:04, the WZ-to-HX transformation initiates. Note, however, that �̂s is not equal to the actual
transformation initiation strain observed in MD simulations (�Ls in Fig. 1(c)). This difference arises from the
fact that the equilibrium analysis does not account for the energy barrier for the forward WZ-to-HX
transformation. The actual transformation initiation occurs at �Ls in (Figs. 1(c) and 3). As the transformation
progresses, the volume fractions of the two phases evolve smoothly. The transformation is complete at
e ¼ ec ¼ 0.11 for the wire in Figs. 3–5. Further deformation beyond ec corresponds to the purely elastic stretch
of the HX-structured wire with f ¼ 1.

5.5. Stress associated with the equilibrium transformation process (sc)

During the transformation, the equilibrium part of the stresses in the phases is

s1 ¼
qu1

q�1
and s2 ¼

qu2

q�2
. (26)

The stress associated with the equilibrium transformation process is then (Eq. (8))
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Here, e1, e2, q�1=q�, q�2=q�, and f as functions of e are determined from the constrained energy minimization
process discussed in Section 5.4.

sc describes the thermodynamically reversible part of the deformation process. Note that Eq. (27) is also
applicable to the wire as it deforms fully elastically in the WZ state before the initiation of the transformation
(f ¼ 0) and in the HX state after the completion of the transformation (f ¼ 1). For example, for the loading
and unloading of a single phase WZ wire, f ¼ 0, qf =q� ¼ 0, and q�1=q� ¼ 1. Consequently, the stress reduces
to that in the WZ phase, i.e., s ¼ s1. Similarly, for the elastic loading and unloading of a single phase HX
wire, f ¼ 1, qf =q� ¼ 0, q�2=q� ¼ 1, and s ¼ s2.

Note that sc only captures the equilibrium part of the transformation process, since the nanowire goes
through a sequence of unstable and equilibrium states (more discussions in Section 6). For example, the
stress–strain response of the 40.81� 39.89 Å wire at 100K is given in Fig. 5. Both the MD data and the model
prediction for sc are shown. The MD profile shows alternate stages of stress increases (toward unstable states)
and decreases (toward equilibrium states) during loading and alternate stages of stress decreases (toward
unstable states) and increases (toward equilibrium states) during unloading. Obviously, sc is close to the
valleys in loading and the peaks in unloading since these valleys (loading) and peaks (unloading) correspond
to more relaxed states of the nanowire.

6. Dissipative process of interface propagation

The thermodynamically irreversible part of the phase transformation event involves contributions from
barriers for both the initiation and propagation of the transformation through the nucleation and motion of
interfaces. A schematic illustration of the energy and stress profiles associated with the process is given in
Fig. 6. The initiation of transformation occurs at the formation of the first nucleus of the HX phase (forward
WZ-to-HX transformation during loading) or the WZ phase (reverse HX-to-WZ transformation during
unloading). The stress at which the WZ-to-HX transformation initiates (point B, Fig. 1(c)) can be obtained
from the value of �Ls and the constitutive behavior of the WZ phase (Fig. 2). Similarly, the stress at which the
HX-to-WZ transformation initiates (point F, Fig. 1(c)) can be obtained from the value of �Us and the
constitutive behavior of the HX phase (Fig. 2). Since the elastic behaviors for �o�Ls (A2B, Fig. 1(c)) and
�4�Us (F2E, Fig. 1(c)) are also fully described by the single phase responses of the WZ and HX wires,
respectively, the discussion on the dissipative process of interfacial propagation concerns only the deformation
stages of B-C-D (loading) and F-G-H (unloading).

The propagation of phase boundaries after phase nucleation involves a sequence of unstable and stable
states. This process is a consequence of the ruggedness of the energy profiles associated interface propagation.
For example, during loading, the nanowire initially stores energy (C-P in Fig. 6(a)) and is brought to
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an unstable high-energy state (point P in Fig. 6(a)). At point P, the wire reaches instability and further
nucleation of the HX phase takes place, resulting in the propagation of the phase boundary. This structural
change is accompanied by a drop in energy U from its value at point P to the value at point V, bringing the
wire closer to the more relaxed equilibrium state represented by the dotted line. The released energy
(DU ¼ UP �UV) is dissipated as heat and constitutes part of the dissipation DQP!V as defined in Eq. (1).

During this period of ‘‘energy accumulation and release’’, stress s first increases between C and P and
decreases precipitously between P and V (Fig. 6(b)). The stress at V may approach sc in Eq. (27). Fig. 7 shows
several configurations in the stage of 0:075o�o0:084 of the nanowire referred to in Figs. 3 and 5. These
pictures show states of the wire immediately after the initiation of the WZ-to-HX transformation. Obviously
over this stage (strain up to 0.08, first three frames with f ¼ 0.453, 0.458, and 0.461), the structure of the wire
remains essentially unchanged without significant progression of transformation in either direction (therefore,
without significant dissipation), while at the same time the mechanical work input is converted into strain
energy and stored in the wire. As soon as the strain exceeds 0.08, the interface starts to propagate and clear
progression of the WZ-to-HX transformation occurs (note the difference between f ¼ 0.461 and 0.54). This
process is a direct reflection of the ruggedness of the energy landscape discussed earlier.

Just as the interfacial energy can be regarded as being proportional to the interfacial area, the energy
required to move the WZ-to-HX phase boundaries naturally increases with the size of the interface, leading to
a dependence of the dissipative stress (sd) on the size of the phase boundary which changes as the
transformation progresses. To reflect this dependence, sd is assumed to be proportional to the normalized
interfacial area fraction Sint=Sm

int and varies with f according to

sd ¼ 4f ð1� f Þsmd . (28)

Here, smd is the maximum value of sd which occurs at f ¼ 0.5. The history of sd is shown in Fig. 8(a) and the
history of energy dissipated per unit volume q ¼ Q/V0 is shown in Fig. 8(b). For comparison, the history of f
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as a function of e for the nanowire referred to in Figs. 3 and 5 is also shown. Note that sd ¼ 0 for f ¼ 0 ð�p�̂sÞ
and f ¼ 1 ð�X�̂cÞ.
7. Macroscopic stress r

Eqs. (8), (27), and (28) combine to give the macroscopic stress as
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, (29)

where the positive and negative signs correspond to loading and unloading, respectively.
Note that the total stress reduces to the stresses in the corresponding individual phases during the elastic

deformation in the WZ state (s ¼ s1) before the initiation of the WZ-HX transformation (f ¼ 0) and in the
HX state (s ¼ s2) after the completion of the HX-WZ transformation (f ¼ 1). During the transformations
(0ofo1), the total stress represents the overall response of the transforming wire, accounting for
contributions from the elasticity of the two constituent phases, the structural energy of the evolving interface
between the two phases, and the dissipation associated with the nucleation, propagation and annihilation of
the interface.

As previously discussed, MD simulations show that the WZ-HX and HX-WZ transformations occur in
a ‘‘stick-and-slip’’ manner, involving alternating stages of primarily elastic deformations in the phases without
appreciable interface propagation and stages of rapid interface propagation (progression of phase
transformation, Fig. 7). This intermittent process of elastic deformation (accumulation of strain energy)
and transformation progression (release of strain energy) leads to serrated stress–strain relations, as shown
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and illustrated in Figs. 5 and 6. It is a fundamental reflection of the discrete nature of the crystalline lattice, the
existence of energy barriers between the WZ and HX crystalline structures (energy landscape with multiple
local minima), and the small sizes of the nanowires. In particular, the fact that the energy landscape involves
multiple local minima plays a dominant role, as shown by, e.g., Fedelich and Zanzotto (1992) and
Truskinovsky and Vainchtein (2004). Similar serrated stress–strain relations have been observed and analyzed
in other low-dimensional nanomaterials such as metal nanowires (Liang et al., 2007), although the serrations
can be averaged out and, therefore, not observed at the macroscopic level. Prediction of the rugged
stress–strain profiles at the continuum level requires a detailed characterization of the energy landscapes not
only for the equilibrium transition between the WZ and HX structures but also for the interfacial nucleation
and annihilation. The model developed here focuses on the delineation of the thermodynamically reversible
and irreversible processes of the transformations. The interest is primarily in the elucidation of the
mechanisms behind the novel pseudoelastic behavior at the nanoscale, rather than in a full account of the
serrations in the stress–strain relations. It is important to point out that it is possible to obtain a
phenomenological characterization of the rugged stress–strain profiles within the framework of the model
developed here. One such attempt would involve, for example, accepting as input from MD simulations values
of the phase volume fraction f at which the phase transformations stop and restart. Such an analysis is
currently being carried for FCC metal nanowires and for ZnO nanowires. The results may be reported in a
future publication.

8. Comparison with MD results

The stress–strain relation predicted by the model and that obtained from MD simulations for the
40.81� 39.89 Å wire at 100K are shown in Fig. 9. As part of the input to the model, the constitutive behaviors
of the two phases are determined by MD calculations, as detailed in Section 5.2. The elastic part of the stresses
(si) and the strain (ei) in each phase, the derivatives of the strains (q�i=q�) and the volume fraction f at each e
are calculated through constrained energy minimization. The model developed here has two independent
parameters (um

int and smd ). The maximum interfacial energy density (um
int) is related to the evolution of

equilibrium states and is determined through fitting to MD results for each size and temperature. The value
of um

int which varies with temperature and size determines the phase equilibrium stress during the evolution of
the transformation for various wire sizes and temperatures. On the other hand, the maximum value
of the dissipative stress (smd ) is related to the dissipation associated with interface propagation and its
value determines the size of the hysteresis loop in a loading–unloading cycle. The value of smd is
also determined by fitting to MD results for the wire sizes and temperatures considered. The individual
contributions to the macroscopic stress associated with the WZ-to-HX forward transformation are compared
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in Fig. 10. The primary contribution (�83%) comes from the gradient term qf =q�ðu2 � u1Þ which
decreases slightly as e increases, reflecting the fact that most of the external work dW is converted into the
internal energy of the HX phase. The contributions of the other terms are relatively small. The term ð1� f Þ

ðq�1=q�Þs1 decreases as the volume fraction of the HX phase increases, while the term f ðq�2=q�Þs2 shows a
gradual increase. The dissipative stress sd first increases and then decreases. The contribution from the
interfacial energy 4ð1� 2f Þum

intðqf =q�Þ is also quite small (o7% of the overall stress) throughout the
transformation.

The relative magnitudes of these terms affect the size and temperature dependence of the behavior of the
wires. To quantify the effects, the micromechanics framework developed here is used to analyze the
pseudoelastic behavior of wires with the lateral dimensions of 21.22� 18.95, 31.02� 29.42, and
40.81� 39.89 Å over the temperature range of 100–500K. The internal energy functions of the WZ and
HX phases for these sizes and temperatures are calculated using MD simulations. The model predictions
and MD results are shown in Fig. 11. Excellent agreement is seen for all the cases analyzed. Obviously, the
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model captures the overall characteristics of the behaviors of the wires and correctly accounts for the size and
temperature effects.

8.1. Size and temperature effects

To analyze the effects of size and temperature, the responses of three wire sizes (21.22� 18.95,
31.02� 29.42, and 40.81� 39.89 Å) at 300K and the response of a 31.02� 29.42 Å wire at three temperatures
are considered.

The effect of wire size on response is analyzed in Fig. 12(a) (loading) and (b) (unloading). The MD results
shown are obtained for a temperature of 300K. The elastic moduli in the elastic stages of deformation increase
with wire size, owing to the higher surface-to-volume ratios at smaller sizes. This stiffening effect can be
explained by the strain energy profiles for WZ (Fig. 12(c)) and HX (Fig. 12(d)). The size-dependence is more
pronounced for the HX structure, primarily because the energy densities of the surfaces of HX wires are higher
than the energy densities of the surfaces of the WZ wires. The critical stresses for transformation initiation
decrease as wires size decreases. Again, the effect of surfaces is at work and the mechanism has to do with the
fact that the structure of reorganized (0 0 0 1) side surfaces of WZ wires have atomic configurations similar to
those of the surfaces of HX-structured wires, as previously observed by Claeyssens et al. (2005) and Freeman
et al. (2006) in both experiments and first principles calculations. The similarity in surface behaviors between
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WZ- and HX-structured wires allows bulk behavior to dominate the transformation process. The higher
surface-to-volume rations at smaller wire sizes reduce the effect of the wire core, causing the critical stresses to
decrease with size, despite the fact the formation energy difference between HX and WZ wires (Du0) is slightly
higher at smaller wires sizes (Fig. 13(a)). This effect can be phenomenologically seen from the values of the
maximum interfacial energy um

int in Fig. 13(b) and the values of ŝs (the stress corresponding to the strain of
� ¼ �̂s (Fig. 5) at which the two phases are equally favored under equilibrium conditions) in Fig. 13(c). Finally,
it is worthwhile to note that the dissipative process of interfacial propagation does not have an appreciable
contribution to the size dependence of the overall wire response, as can be seen from Fig. 13(d) which relates
smd to wire size.

The responses of a 31.02� 29.42 Å wire at 100, 300, and 500K are shown in Fig. 14(a) (loading) and (b)
(unloading). There is a moderate decrease in stress at higher temperatures. This thermal softening arises from
both changes in the constitutive response of the WZ and HX phases and changes in the difference between the
energy barriers for the transformations and available thermal energy in the system. The first aspect can be
quantified explicitly. Fig. 14(c) and (d) show, respectively, the strain energy profiles for WZ and HX at 100,
300, and 500K. The dependence on temperature is a weak one and is more appreciable at large strains. The
dependence of the formation energy densities (u0

i ) of WZ and HX on temperature over the range of 100–500K
is shown in Fig. 15(a). While the actual values of u0

i affect phase stability, the difference Du0 ¼ u0
2 � u0

1
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influences the total stress during transformation. This can be clearly seen in the term ðu2 � u1Þqf =q� (Fig. 10)
which depends on Du0. For the 31.02� 29.42 Å wire, Du0 is only weakly temperature-dependent, suggesting
that it is not the primary source of the temperature dependence of the transformation stress.

The dependence of the transformation stress on temperature arises primarily out of the dissipative part of
the transformation process, as can be seen from the maximum stress associated with dissipation (smd ) which
shows a clear dependence on temperature (Fig. 15(b)). Obviously, smd decreases as higher thermal energy levels
at higher temperatures reduce the mechanical work required to overcome the barriers for interface
propagation both during loading and unloading.

Finally, it is worth noting that the maximum interfacial energy (um
int) is rather constant over the temperature

range analyzed, suggesting that the interface does not contribute significantly to the temperature dependence
of the pseudoelastic behavior of the wires and the temperature effect primarily comes from the bulk processes
already discussed.

9. Summary

A continuum model is developed to characterize the novel pseudoelastic behavior recently discovered in
ZnO nanowires. The model describes and quantifies the full cycle of behavior observed in MD simulations,
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including the elastic responses of the WZ and HX wires and the transformations between the WZ and HX
phases which underlie the pseudoelastic response. The processes of phase initiation and interface propagation
for both the forward WZ-to-HX transformation and reverse HX-to-WZ transformation are characterized
phenomenologically using phase volume fractions. Based on the first law of thermodynamics, the model
decomposes the transformation event into a thermodynamically reversible process of the evolution of phase
equilibrium states and a thermodynamically irreversible process of interface nucleation and propagation. The
first part is conservative and the second part accounts for the dissipation associated with the deformation in
both loading and unloading. Constrained energy minimization allows the stress associated with the
equilibrium process to be determined and a phenomenological relation allows the stress associated with
dissipative process to be characterized. As part of the model predictions, the hysteresis loop associated with
the pseudoelastic behavior comes naturally out of the loading–unloading process, with the energy required for
both phase nucleation and interface propagation contributing to the dissipation.

The required input to the model include the elastic constitutive relations of the WZ and HX phases which
are obtained from independent MD calculations for specific wire sizes and temperatures, values of the
maximum interfacial energy um

int and the maximum dissipative stress smd which are obtained by fitting to MD
results, and the values of certain critical strains (forward WZ-HX nucleation strain (�Ls ) and reverse HX-
WZ nucleation strain (�Us )) which are also obtained from MD data.

The model is used to quantify the behavior of ZnO nanowires with lateral dimensions between 20 and 40 Å
over the temperature range of 100–500K. Excellent agreement with data from MD simulations is obtained. It
is found that the size dependence of behavior arises primarily from the effect of surfaces on the strain energy
or elastic constitutive relations of the WZ and HX phases and the relative importance of surface and bulk in
determining the energy associated with the interface between the WZ and HX phases. This size effect is
reflected in the model phenomenologically through lower phase equilibrium stress and lower interfacial energy
at smaller wire sizes. The dependence of the overall pseudoelastic behavior on temperature comes primarily
from the dissipative process of interface propagation. Specifically, the higher thermal energy levels at higher
temperatures reduce the amount of mechanical work (therefore the stress) required to overcome the barriers
for interface propagation. This effect is reflected in the model phenomenologically through lower values of the
maximum dissipative stress at higher temperatures.
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