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At high guest (lithium) atom concentrations, the diffusion of host (e.g., silicon) atoms

may become significant in amorphous Li-alloy-based solid electrodes. The effect of this

diffusion mechanism on stress development is in addition to guest atom diffusion,

stress-induced enhancement of guest atom diffusion and plasticity. The effect of the

diffusive migration of host atoms in amorphous Li-alloy-based electrodes is investi-

gated using a continuum model. A mixed-form finite element framework is developed

to simulate the full coupling between stress development and interdiffusion. This

framework overcomes the challenges associated with the numerical evaluation of the

hydrostatic stress gradient. The analysis focuses on the relative importance of the

mechanical driving force and chemical driving force for host migration. Calculations

show that host migration can cause stress reductions of up to �20% in Li–Si electrodes

at stress levels below the yield threshold of the material. Analyses also show that the

long-term steady state of stress distribution is independent of the host diffusivity and

the thermodynamic factor of diffusion which quantifies the tendency of the two species

of atoms to chemically mix, even though the transient behavior (in particular, the peak

stresses during charging being important quantities) does depend on the thermody-

namic factor and the host diffusivity. The diffusion of Si (host) introduces a time scale

which, along with the time scale for Li (guest) diffusion, controls the diffusional

response of electrodes.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the quest for better Li-ion batteries, Li alloys have attracted significant interest since they offer greater specific and
volumetric capacities than graphite. One of the main challenges with alloy-based Li-ion battery electrodes, however, has
been the large volume changes and associated cracking during lithiation and delithiation (Beaulieu et al., 2003; Larcher
et al., 2007; Sethuraman et al., 2010). One way to mitigate the problem is to reduce the size of the electrodes. In particular,
electrodes made of nano-sized structures such as nanowires (NWs), nanotubes and nanoscale core-shell structures have
been shown to be particularly effective in avoiding fracture (Chan et al., 2008; Cui et al., 2009; Hu et al., 2011; Magasinski
et al., 2010; Song et al., 2010). In many cases, nanosized electrodes show no tendency to fracture and instead degrade
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through failure mechanisms which are distinctly different from those in electrodes of larger sizes. For example, while bulk
and thin film Si electrodes mainly fail through cracking (Beaulieu et al., 2001, 2003), nano-sized Si electrodes degrade
through internal nano-pore formation or surface roughening (Choi et al., 2010; Hu et al., 2011). Void formation rather than
fracture has also been observed in Li/Ge nanowire electrodes (Liu et al., 2011a).

The transition of failure through fracture to degradation through void formation and surface roughening in the cases
cited occurs due to a number of reasons. Although many mechanisms are responsible, primary factors include
concentration-induced material softening (e.g., reductions in elastic modulus and yield threshold) and stress relaxation
through several mechanisms. The latter plays a very important role as lower stresses reduce the likelihood of cracking and
allow higher charging rates to be achieved. Obviously, identification and quantification of stress buildup and relaxation
mechanisms are especially relevant to the study of electrode performance and reliability.

Three mechanisms lead to stress buildup when a Li-alloy electrode is charged or discharged. The first mechanism arises
due to the inhomogeneity of Li concentration. When lithium is inserted through the surface, a gradient of Li concentration
develops in the material, leading to inhomogeneous expansion which causes stress development. The stresses in this
scenario depend on the ratio between the time scale for diffusion ð � r2

0=DLi
ef f Þ and the total time to attain full charging.

Here, r0 is the characteristic size scale of the electrode particle and DLi
ef f is the effective diffusivity of Li (Christensen and

Newman, 2006; Gao and Zhou, 2011). The second mechanism has to do with constraint applied by the current collector or
a solid–electrolyte interface (SEI) layer, as observed in thin-film electrodes (Li et al., 2011; Xiao et al., 2011) or CNT-Si core-
shell structures (Hu et al., 2011). The third mechanism, mainly seen during the first charging cycle of crystalline silicon
electrodes, is due to the mismatch strain at lithiated/unlithiated phase boundaries (Chon et al., 2011; Liu et al., 2011b).
Relief of the combined stresses due to the three mechanisms is a primary concern in the design of electrodes.

Many continuum studies have been carried out to investigate the buildup and mitigation of stresses in Li-ion battery
electrodes and the associated effects on the electrochemistry (Cheng and Verbrugge, 2008; Christensen and Newman,
2006; Cogswell and Bazant, 2012; Garcia et al., 2005; Haftbaradaran et al., 2010; Kao et al., 2010; Purkayastha and
McMeeking, 2012; Ryu et al., 2011; Van der Ven et al., 2009; Zhang et al., 2007). Tang et al. (2010a, 2010b) showed that the
elastic strain energy can significantly affect the electrochemistry in the cathode material of LiFePO4. Bower et al. (2011)
developed a comprehensive framework and used it to analyze the time-dependent plasticity in thin-film Li/Si electrodes.
The effect of stress-enhanced diffusion (SED) was analyzed, revealing significant reduction in stress due to the mechanical
driving force to diffusion (Gao and Zhou, 2011). Deshpande et al. (2010) considered the effect of surface stresses and
concluded that surface effect can reduce the tensile stresses in nano-sized electrodes, thereby improving electrode
cyclability. Zhao et al. (2011a) considered plastic deformation and showed that inelastic flow can significantly alleviate the
stresses in Li/Si. The mechanisms for stress reduction considered in these analyses include stress-enhanced diffusion of Li,
surface-effect-induced compressive stresses and plasticity.

One of the stress reduction mechanisms in Li–Si that have not been analyzed is the migration of Si (host) atoms which
can be significant especially at high Li concentrations when the bonds between Si atoms are weakened or broken. Indeed,
DFT calculations by Kim et al. (2011) show that the bonding environment of silicon atoms changes significantly as lithium
concentration increases, indicating that the diffusive migration of silicon may become non-negligible. Recently, Johari et al.
(2011) calculated the diffusivity of both Li and Si (DLi and DSi) in crystalline and amorphous Si (c-Si and a-Si) electrodes
using ab initio molecular dynamics. They found that DLi

¼1.67�10�10–4.88�10�9 cm2 s�1 and DSi
¼1.97�10�14–

5.74�10�13 cm2 s�1 for c-Si and DLi
¼1.25�10�9–3.69�10�8 cm2 s�1 and DSi

¼1.53�10�11–5.13�10�10 cm2 s�1 for
a-Si. The associated diffusivity ratio in a-Si falls into the range of DSi/DLi

¼0.8�10�2–1.39�10�2. It should be noted that
the study by Johari et al. was conducted on Li/Si systems with the composition of Li1.0Si. For higher Li contents, the
diffusivity ratio DSi/DLi could be even higher since more Si–Si covalent bonds are broken. In Li/Ge, another promising alloy-
based electrode material, host diffusion could be even more significant since the Ge–Ge covalent bond is much weaker
than the Si–Si bond (the melting temperatures of crystalline Si and Ge are 1687 K and 1211.40 K, respectively).

In this paper, a numerical framework with mixed finite elements is developed to analyze the strong coupling between
stress development and interdiffusion in Li-alloy based electrodes with finite host diffusivity. The analysis focuses on the
direction of the diffusive migration of host (Si) atoms and the dependence of the direction on the relative strengths of the
chemical and mechanical driving forces. A parametric study is carried out over a range of values of host diffusivity and the
thermodynamic factor which measures the tendency for the Li and Si atoms to chemically mix. In particular, the analysis
allows the effect of Si diffusion on stress evolution to be quantified. The calculations also focus on the time scales
associated with the diffusive migration of guest and host, and how these time scales affect the evolution and distributions
of stresses and concentrations, especially at charge times beyond the characteristic time scale for host migration. The
results will show quantitatively that the diffusion of Si is a significant mechanism for stress relief in Li/Si, in addition to
SED and inelastic deformation. Of particular interest is the finding that the steady-state distributions of stresses at times
much longer than the characteristic time for Si diffusion depends on neither the thermodynamic factor nor the
diffusivity of Si.

2. Theoretical framework for deformation–interdiffusion coupling

The electrode is assumed to be composed of two chemical species: host (denoted as H) and guest (denoted as G, being
lithium in this paper). Vacancies are not treated as a chemical species due to the lack of site-conservation constraint in
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amorphous materials (Stephenson, 1988; Van der Ven et al., 2010). Sufficient electric conductance is assumed so that the whole
electrode has a uniform electric potential, and only the deformation and diffusion processes need to be analyzed explicitly.

2.1. Kinematics

Since the material of interest is highly amorphous with small but non-zero host diffusivity (Johari et al., 2011; Kim
et al., 2011), the notion of continuous deformation must be used with caution. Following the treatment by Stephenson
(1988), we identify two types of host atom movement during guest (lithium) insertion: collective convection and diffusive
transport. To illustrate the relative displacement between neighboring host atoms, network lines (solid black) linking
adjacent hosts are introduced in Fig. 1. It should be noted that these lines do not necessarily represent host–host bonds,
although recent studies do indicate that a significant portion of Si atoms tends to remain in rings, chains or pairs even in
highly lithiated amorphous Li/Si (Kim et al., 2011). It should also be noted that the regular arrangement of the initial
network [Fig. 1(a)] is used only to facilitate the illustration without implying any regularity or periodicity in atomic
structure. As the material expands due to guest insertion, two scenarios may arise in terms of the movement of the host
atoms. In the first scenario (consider atom B as the example), the network lines linking the host atom (B) with its
neighbors (B–C, B–D, B–E) remain; and the movement of the host (B) can be tracked by bookkeeping the continuum
deformation x¼x(X,t) of the network. We call this type of host movement collective convection. In the second scenario
(consider atom A as the example), the local distortion of the network is so significant that the atom’s nearest neighbors
completely change. The displacement of atom A can be decomposed into two parts: the first part is from the initial position
of A to an imaginary point A0 and is due to collective convection; the second part is from A0 to the final position of A. The
second part of displacement (from A0 to the final position) is highly random compared with the collective convection, and
the effect is the diffusive transport of the host atom relative to the collectively deformed configuration. Here, the position
of A0 can be obtained by averaging the positions of atoms within a representative volume element (RVE) around A [A, C, D,
F and G in Fig. 1(a)]. The deformed network so obtained (to which A0 is attached) reflects the structural deformation of the
material and defines the updated Lagrangian configuration.

If the diffusive transport dominates the host atom movement, the arrangement of the hosts is reshuffled quickly (too
many host atoms move like A) and a continuum mapping x¼x(X,t) between the reference and current configurations may
not be well-defined. Here, we assume that the diffusivity of the hosts is much smaller than that of the guests (Li) so that
the host network can be identified and, consequently, the continuous deformation x¼x(X,t) is well-defined. Note that
x¼x(X,t) should be construed in an average sense which may involve statistically averaging the displacement of atoms in a
specific RVE [cf. Fig. 1].

The Eulerian concentrations (concentrations in the current configuration) of the host (e.g., Si) and guest (lithium),
namely the atomic numbers per unit current volume, are denoted by cH and cG, respectively. Their Lagrangian counterparts
CH and CG in the reference configuration are related to cH and cG by CH

¼ detðFÞcH and CG
¼ detðFÞcG, with F¼qx/qX being the

deformation gradient. The dimensionless compositions xH
�cH/(cG

þcH), xG
�cG/(cG

þcH) and x�cG/cH, on the other hand,
can be used to measure the proportions of the concentrations of the host and the guest.

It is well-known that Li/Si may undergo plastic deformation when the stresses reach the yielding threshold (Hertzberg
et al., 2011; Sethuraman et al., 2010). Since the major issue of interest in this paper is the effect of mobile host atoms in
amorphous Li-alloy electrodes, we assume that the stresses are below the yielding threshold in order to simplify the theory
and concentrate on the coupling between deformation and interdiffusion. This also allows the effect of host diffusion to be
Fig. 1. The distinction between collective convection and diffusive transport. (a) The original host network. The solid black lines represent the network

lines linking each host atoms to its neighboring hosts. These network lines do not necessarily represent host–host bonds. (b) When guest atoms (Li here)

are inserted, the host network is distorted and some host atoms (e.g. atom A) may migrate relative the network. The dashed lines in (b) gives the host

network site A0 which is given by averaging the movement of atoms (i.e. A, C, D, F and G) in a RVE around A.
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better quantified. The deformation gradient under this condition can be decomposed as (Lee, 1981)

F¼ Fe
UFSF , ð1Þ

where Fe and FSF are the parts of the deformation gradient associated with elastic deformation and stress-free expansion
due to concentration changes, respectively (Bower et al., 2011; Swaminathan et al., 2007; Wu, 2001; Zhou et al., 2010).
The associated rates of deformation, on the other hand, are

De
� ½ _Fe

ðFe
Þ
�1
�sym,

DSF
� ½Fe

U _F
SF
UðFSF
Þ
�1

UðFe
Þ
�1
�sym, and

D� ½ _FF�1
�sym ¼De

þDSF :

9>>>=
>>>;

ð2Þ
2.2. Conservation of mass and momentum

The diffusive fluxes of guest and host can be measured either in the Lagrangian frame as JG and JH or in the updated
Lagrangian frame as jG and jH. These quantities are related through f�F�1 as

JS
K ¼ detðFÞf Ki jS

i ðS¼ G, HÞ: ð3Þ

The associated equation for mass conservation in the Lagrangian frame is

@CS

@t
þ
@JS

K

@XK
¼ RS

b ðS¼ G, HÞ, ð4Þ

where RS
b is the body source of species S (¼G,H) measured in the Lagrangian frame. In this paper, we assume RG

b ¼ RH
b ¼ 0.

It is important to notice that jG and jH are measured in the updated Lagrangian frame relative to the moving host
network which undergoes convection x¼x(X,t), instead of in the Eulerian frame. If the fluxes were to be measured relative
to the Eulerian frame, the conservation of mass would take the form of a mixed convection–diffusion equation in order to
avoid double counting the movement of G and H (Stephenson, 1988). That approach is not used here. Again, vacancies
should not be treated as a chemical species here due to the lack of site-conservation constraint in amorphous materials, as
discussed by Stephenson (1988).

Finally, under the conditions of zero body force and negligible inertia effect, balance of momentum takes the form

@sji

@xj
¼ 0, ð5Þ

where sij is the mechanical Cauchy stress. Contributions due to the electromagnetic Maxwell stress is neglected since its
magnitude is much smaller than the contribution due to sij in typical battery electrode applications (Bower et al., 2011).

2.3. Thermodynamics

The thermodynamic properties of the electrode material can be characterized by the Lagrangian density of the
Helmholtz free energy f (Wu, 2001). We assume

f¼fðFe,CH ,CG,y,aÞ, ð6Þ

where y is the temperature and a is an internal state variable describing the non-equilibrium metastable states. Physically, a
can be the degree of amorphization (Argon and Demkowicz, 2008; Limthongkul et al., 2003), porosity (Choi et al., 2010), or
degree of damage. Consider an infinitesimal reversible virtual deformation dx during which CH, CG, y and a are kept constant,
the virtual work done by the external agent is related to the first Piola–Kirchhoff stress sPK1

Kj ¼ detðFÞf Kisij through

dWmech ¼

Z
V0

sPK1
Kj

@dxj

@XK
dV0, ð7Þ

where
R

V0
ð�ÞdV0 stands for integration over the Lagrangian volume. On the other hand

dWmech ¼

Z
V0

f Fe
þ
@dx

@x
UFe,CH ,CLi,y,a

� �
�fðFe,CH ,CLi,y,aÞ

� �
dV0

¼

Z
V0

@f
@Fe

jk

�����
CH ,CG ,y,a

@dxj

@xl
Fe

lk

" #
dV0 ¼

Z
V0

@f
@Fe

jk

�����
CH ,CG ,y,a

@dxj

@XK
f SF

K k

" #
dV0: ð8Þ
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Here, f SF
�(FSF)�1. A comparison of (7) and (8) leads to

sPK1
Kj ¼

@f
@Fe

jk

�����
CH ,CG ,y,a

f SF
K k ð9Þ

and

sij ¼
1

detðFÞ
FiKsPK1

Kj ¼
1

detðFÞ
Fe

ik

@f
@Fe

jk

�����
CH ,CG ,y,a

: ð10Þ

Following Wu (2001), the chemical potential of guest is given by

mG ¼
@f
@CG

����
F,CH ,y,a

¼
@f
@Fe

ij

�����
CH ,CG ,y,a

@Fe
ij

@CG

�����
F,CH ,y,a

þ
@f
@CG

����
Fe ,CH ,y,a

: ð11Þ

Since ð@fSF=@CG
Þ ¼ �fSF

ð@FSF=@CG
ÞfSF

@Fe

@CG

����
F,CH ,y,a

¼
@ðFUfSF

Þ

@CG

�����
F,CH ,y,a

¼�Fe
U
@FSF

@CG

�����
F,CH ,y,a

UfSF : ð12Þ

Substitution of Eqs. (12) into (11) leads to

mG ¼
@f
@CG

����
Fe ,CH ,y,a

�
@f
@Fe

ij

�����
CH ,CG ,y,a

Fe
ik

@FSF
kl

@CG

�����
F,CH ,y,a

f SF
lj : ð13Þ

With Eqs. (10) and (13), the guest (lithium) chemical potential can be related to the Cauchy stress by

mG ¼
@f
@CG

����
Fe ,CH ,y,a

�detðFÞf e
misijF

e
jk

@FSF
kl

@CG

�����
F,CH ,y,a

f SF
lm: ð14Þ

By the same token, the chemical potential of the host atoms can be written as

mH ¼
@f
@CH

����
Fe ,CG ,y,a

�detðFÞf e
misijF

e
jk

@FSF
kl

@CH

�����
F,CG ,y,a

f SF
lm: ð15Þ

2.4. Kinetics

According to Wu (2001), the Clausius–Duhem inequality can be stated in the Lagrangian frame as

� _fþZ _y�rPK1
Ki

_F iK�mH _C
H
�mG _C

G
h i
þyJðqÞUrX

1

y

� �
þyJH

UrX �
mH

y

� �
þyJG

UrX �
mG

y

� �
Z0, ð16Þ

where J(q) is the heat flux measured in the Lagrangian frame and Z is the Lagrangian density of entropy. Under isothermal
conditions with _y ¼ 0 and rXy¼0,

� _f�rPK1
Ki

_F iK�mH _C
H
�mG _C

G
h i

þyJH
UrX �

mH

y

� �
þyJG

UrX �
mG

y

� �
Z0: ð17Þ

On the other hand, because _y ¼ 0

_f ¼
@f
@Fe

ij

�����
CH ,CG ,y,a

_F
e

ijþ
@f
@CH

����
Fe ,CG ,y,a

_C
H
þ
@f
@CG

����
Fe ,CH ,y,a

_C
G
þ
@f
@a

����
Fe ,CH ,CG ,y

_a: ð18Þ

Since rPK1
Ki

_F iK ¼ detðFÞsijDji, Eqs. (18), (14), (15), (10) and (2) lead to

_f�rPK1
Ki

_F iK�mH _C
H
�mG _C

G
¼
@f
@a

����
Fe ,CH ,CG ,y

_aþdet Fð Þf e
misijF

e
jkf SF

lm

@FSF
kl

@CG

�����
F,CH ,y,a

_C
G
þ
@FSF

kl

@CH

�����
F,CG ,y,a

_C
H

" #
�det Fð ÞsijD

SF
ji : ð19Þ

By Eqs. (19), (17) and (3), the isothermal Clausius–Duhem inequality in the updated Lagrangian frame takes the form

gaþ jG
Urxð�mGÞþ jH

Urxð�mHÞZ0, ð20Þ

where the local dissipation rate ga is defined as

ga � sijD
SF
ji �f e

misijF
e
jkf SF

lm

@FSF
kl

@CG

�����
F,CH ,y,a

_C
G
þ
@FSF

kl

@CH

�����
F,CG ,y,a

_C
H

" #
�

1

detðFÞ

@f
@a

����
Fe ,CH ,CG ,y

_a: ð21Þ
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In general, the stress-free deformation FSF can be a function of CG,CH and the internal state variable a, i.e.,

FSF
¼ FSF

ðCH ,CG,aÞ: ð22Þ

By Eq. (2)

sijD
SF
ji ¼ sijF

e
jk
_F

SF

kl f SF
lm f e

mi: ð23Þ

Therefore, Eqs. (21)–(23) combine to give

ga ¼ f a _a,

f a � f e
misijF

e
jkf SF

lm
@FSF

kl
@a

���
F,CH ,CG ,y

� 1
detðFÞ

@f
@a

���
Fe ,CH ,CG ,y

:

8><
>: ð24Þ

The kinetic driving force can be defined as

Xkin � f a,rxð�mGÞ,rxð�mHÞ
� �T

ð25Þ

and the associated response is

Jkin � ½ _a, jG, jH
�T ¼ JkinðXkinÞ: ð26Þ

The kinetic response of the electrode material is specified through the driving force–response relation Jkin¼Jkin(Xkin),
which must satisfy the Clausius–Duhem inequality in the form of

JT
kinUXkinZ0: ð27Þ

In this paper, the simplest linear ‘‘diagonal’’ form is chosen for Eq. (26) such that

_a ¼ caf a,

jG
i ¼�

DG
ik

kBy
cG@mG

@xk
and

jH
i ¼�

DH
ik

kBy
cH@mH

@xk
:

8>>>>>><
>>>>>>:

ð28Þ

In the above relations, DG
ik and DH

ik are the positive-definite tensorial diffusivity of guest and host, respectively; ca is the
linear coefficient for internal state variable evolution and kB is the Boltzmann constant. The dissipation due to plastic flow
is not considered here because the stresses are assumed to be below the yield threshold.

It is often convenient to evaluate the fluxes in the Lagrangian frame. These fluxes can be obtained from Eq. (28) through

JG
K ¼�

DG

kBy
f Kif JiC

G@mG

@XJ
and

JH
K ¼�

DH

kBy
f Kif JiC

H@mH

@XJ
:

8>>>><
>>>>:

ð29Þ

2.5. Constitutive behaviors of fully amorphized isotropic electrode materials

Eqs. (6), (10), (14), (15), (25) and (26) provide a general framework for two-species electrode materials below plastic
yield threshold. To proceed, material-specific relationships [Eqs. (6), (22) and (26)] need to be specified. Since the electrode
material of interest here is fully amorphized Li-alloys, several further assumptions are in order.

2.5.1. Full amorphization

The theoretical framework in this paper is capable of phenomenologically capturing the amorphization process in the
first few charging cycles. Such a process of amorphization is not considered here, mainly due to the lack of experimental
data on the evolution law. Instead, the alloy is assumed to have fully amorphized, with saturated degree of amorphization,
i.e. _a ¼ 0. This assumption is reasonable because full amorphization is achieved after only a few charge–discharge cycles
for an initially crystalline Si electrode. The isothermal Helmholtz free energy density thus becomes

f¼fðFe,CH ,CG
Þ: ð30Þ

2.5.2. Small elastic deformation

The elastic deformation is assumed to be small compared to the total deformation and can be characterized by the
elastic strain

ee �
1

2
ððFe
Þ
T
ðFe
Þ�IÞ: ð31Þ
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The Helmholtz free energy density can therefore be written as the sum of a stress-free part and an elastic part
(Wu, 2001), i.e.,

f¼fðFe,CH ,CG
Þ ¼fSF

ðCH ,CG
Þþ

1

2
JSFCijklee

ije
e
kl, ð32Þ

where Cijkl¼Cijkl(CH,CG) is the elastic modulus which depends on material composition in general. JSF
� detðFSF

Þ is the
Jacobian of the stress-free expansion.
2.5.3. Isotropy

The physical properties of the electrode material are assumed to be isotropic. Specifically, the diffusivities are assumed
to be of the forms

DG
ik ¼DGdik and

DSi
ik ¼DSidik,

)
ð33Þ

the stress-free expansion is

FSF
¼ ½JSF

ðCH ,CG
Þ�1=3I, ð34Þ

and the elastic response is also assumed to be isotropic such that

f¼fðFe,CH ,CG
Þ ¼fSF

ðCH ,CG
Þþ JSF 9

2
Kee2

m þGee0
ij e

e0
ij

� �
: ð35Þ

Here, ee
m � ee

kk=3 and ee0
ij � e

e
ij�e

e
mdij are, respectively, the isotropic and deviatoric parts of the elastic strain; K and G are the

composition-dependent bulk and shear modulus, respectively. Eqs. (10) and (35) lead to

sij ¼ Fe
iK ð3Kee

mdKLþ2Gee0
KLÞF

e
jL, ð36Þ

where second-order terms of ee have been neglected due to the assumption of small elastic deformation. The particular
form of Eq. (36) ensures that the correct rotational relationship between ee and r is maintained. With Eqs. (14), (15), (35)
and (36), the chemical potential of the host and guest can be shown to be

mH ¼
@fSF

@CH

�����ee ¼ 0,CG

�
1

3
detðFe

ÞOHðSFÞskk and

mG ¼
@fSF

@CG

�����ee ¼ 0,CH

�
1

3
detðFe

ÞOGðSFÞskk;

8>>>>><
>>>>>:

ð37Þ

where OHðSFÞ
� @JSF=@CH

���
CG

and OGðSFÞ
� @JSF=@CG

���
CH

are the stress-free partial atomic volume of the host and guest,

respectively. Again, second-order terms of ee are neglected in the derivation of Eq. (37). It should be pointed out that under

the condition that ee
¼0 and r¼0, the stress-free Helmholtz free energy density fSF

���
ee ¼ 0

is equal to the stress-free Gibbs

free energy density cSF9r¼0 because the Legendre transformation term is zero. Therefore, Eq. (37) can also take the form of

mH ¼
@cSF

@CH

�����r ¼ 0,CG

�
1

3
detðFe

ÞOHðSFÞskk ¼ mH
n
þkBylngHxH�detðFe

ÞOHðSFÞsm and

mG ¼
@cSF

@CG

�����r ¼ 0,CH

�
1

3
detðFe

ÞOGðSFÞskk ¼ mG
n
þkBylngGxG�detðFe

ÞOGðSFÞsm,

8>>>>><
>>>>>:

ð38Þ

where mH
n

and mG
n

are the reference-state chemical potentials; and gH and gG are the stress-free activity coefficients.

sm�skk/3 is the hydrostatic stress.
Finally, substituting Eqs. (38) into (29) and neglecting second-order terms of ee lead to

JH
K ¼�DHf Kif JiFU xG@CH

@XJ
�xH@CG

@XJ

 !
þ

DH

kBy
f Kif JiC

H@½O
HðSFÞsm�

@XJ
and

JG
K ¼�DGf Kif JiFU xH@CG

@XJ
�xG@CH

@XJ

 !
þ

DG

kBy
f Kif JiC

Li@½O
GðSFÞsm�

@XJ
,

8>>>>><
>>>>>:

ð39Þ

where F�1þ(xG/gG)(qgG/qxG)¼1þ(xH/gH)(qgH/qxH) is the stress-free thermodynamic factor which is assumed to depend
only on the composition xG or xH.
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3. Numerical formulation with mixed finite elements

In Eq. (39), the diffusion fluxes of the host and guest consist of two parts each. The stress-free (chemical) parts

JH,chem
K ¼�DHf Kif JiFU xG@CH

@XJ
�xH@CG

@XJ

 !
and

JG,chem
K ¼�DGf Kif JiFU xH@CG

@XJ
�xG@CH

@XJ

 !
8>>>>><
>>>>>:

ð40Þ

are due to chemical interactions between the guest and host atoms. The mechanical parts

JH,mech
K ¼

DH

kBy
f Kif JiC

H@½O
HðSFÞsm�

@XJ
and

JG,mech
K ¼

DG

kBy
f Kif JiC

G@½O
GðSFÞsm�

@XJ

8>>>><
>>>>:

ð41Þ

are due to stresses which tend to squeeze the atoms from compressive regions to tensile regions. It has been suggested
that the stress-induced contributions may significantly affect concentrations and stresses in Li-ion battery electrodes
(Zhang et al., 2007; Zhao et al., 2011a, 2011b). For nanowire electrodes made of Li/Si, the stress effect could amount to a
303% increase in the effective diffusivity, thereby significantly decrease the stress levels (Gao and Zhou, 2011). Therefore,
JH,mech
K and JG,mech

K must be captured to correctly evaluate the stress levels and assess resulting failure in Li-alloy electrodes.
One of the major numerical challenges here is associated with the gradient of hydrostatic stress (i.e. qsm/qXJ) that

appears in Eq. (41) when a finite element (FE) method is used. Since @sm=@XJp@ee
m=@XJ , either the strain gradient or the

stress gradient itself has to be calculated numerically. Tang et al. (2010a) used a finite difference method to calculate the
diffusion–stress coupling in olivine electrodes and successfully reproduced the phase transformation characteristics
observed in experiments. The benefit of using a finite difference scheme is that one automatically captures the second-
order deformation gradient by using appropriate discretized gradient operators. The finite element method, however, is
more valuable if geometric shapes other than rectangles are involved.

When a linear interpolation is used with a finite element, the information of strain gradient is lost since the diagonal
terms of the interpolator’s spatial Hessian are always zero. One remedy is to use elements with high-order polynomials as
the interpolation functions. Another strategy is to compute the second-order deformation gradients by fitting to nodal
displacements across several adjacent elements, instead of relying only on the nodal values of one specific element under
consideration (Abu Al-Rub and Voyiadjis, 2005). These methods fall into the category of irreducible finite element methods.

Here, we propose a mixed form finite element framework to simulate the diffusion/deformation coupling. Instead of
using only the deformation and host/guest concentrations as the nodal variables, we interpolate sm as a redundant degree
of freedom, thereby automatically resolve qsm/qXJ required in Eq. (41). Section 3 is devoted to the mixed FE scheme and
the numerical results of interdiffusion/deformation coupling are left to Section 4.

3.1. Variational form

The mixed FE method was originally proposed to avoid numerical singularity in problems of incompressible solids, for which
the hydrostatic stress sm cannot be well-defined in terms of the displacement field. As a remedy, the hydrostatic stress can be
introduced as a Lagrangian multiplier to enforce the incompressibility, hence the name ‘‘mixed’’ finite element. Similar concepts
were later adopted to capture the strain gradient effects in non-local theories of plasticity by treating either the rotation or the full
deformation gradient as redundant variables (Luscher et al., 2010; Shu et al., 1999). Mixed FE methods have also been used in soil
mechanics, in which transport of incompressible fluid in porous media is mainly driven by pressure gradients (Borja et al., 1998).
Although the concept of mixed FE could be very useful to calculate qsm/qXJ in Eq. (41), we are not aware of any work that uses it
for diffusion/deformation coupling problems in battery electrodes. Here, we treat the hydrostatic stress sm(X,t) as though it was
an independent field variable in order to facilitate the calculation of its gradients. We call sm a redundant variable, in contrast to
truly independent field variables such as u(X,t)¼x�X, CH and CG. This redundant variable is implicitly constrained by Eq. (36), i.e.,

3ee
m�sm=K ¼ 0: ð42Þ

Here, second-order terms of ee are neglected in the derivation of Eq. (42). Since detðFÞ ¼ detðFe
ÞdetðFSF

Þ ¼ detðFe
ÞJSF and

ee
m � ðdetðFe

Þ�1Þ=3, the constraint condition in (42) can be restated in the variational form ofZ
V

detðFÞ

JSF
ðCH ,CG

Þ
�1�

sm

K

" #
dsmdV ¼ 0, ð43Þ

where
R

V (�)dV stands for integration over the current configuration of the body. The same constraint in the Lagrangain domain
V0 is Z

V0

detðFÞ det Fð Þ=JSF
�1�sm=K

h i
dsm dV0 ¼ 0 ð44Þ
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The variational statement of the conservation of momentum [Eq. (5)], on the other hand, takes the standard formZ
V0

sPK1
Ji

@dui

@XJ
dV0 ¼

Z
S0

Tidui dS0þ

Z
V0

BiUdui dV0, ð45Þ

where sPK1
Ji ¼ detðFÞf Jjsji and

sij ¼ smdijþ2GFe
iKe

e0
KLFe

jL: ð46Þ

Here, sm is treated as an independent variable.
R

S0
ð�ÞdS0 stands for integration over the surface of the Lagrangian domain. T

and B are the surface traction and body forces in the Lagrangian frame, respectively.
Finally, the conservation of mass [Eq. (4)] requiresZ

V0

@CS

@t

�����
X

UdCS dV0 ¼

Z
V0

JS
K

@dCS

@XK
dV0þ

Z
V0

RS
bdCS dV0þ

Z
S0

QSdCS dS0 ðS¼ G, HÞ, ð47Þ

where QG and QH are the Lagrangian surface influxes. The fluxes JG
K and JH

K are given by Eq. (39), with sm being treated as an
independent variable.

3.2. Discretization

The variational forms in Eqs. (43)–(47) are discretized using the FE interpolations of

xðX,tÞ ¼
P
a

Nx
aðXÞxaðtÞ,

CG
ðX,tÞ ¼

P
a

NC
a ðXÞC

G
a ðtÞ,

CH
ðX,tÞ ¼

P
a

NC
a ðXÞC

H
a ðtÞ and

smðX,tÞ ¼
P
a

Nsm
a ðXÞsa

mðtÞ,

8>>>>>>>><
>>>>>>>>:

ð48Þ

where Nx
aðXÞ, NC

a ðXÞ and Nsm
a ðXÞ are shape functions for the displacement, concentration and hydrostatic stress degrees of

freedom (DOF), respectively; xa(t), CG
a ðtÞ, CH

a ðtÞ and sa
mðtÞ are the corresponding time-dependent nodal values. Here, second-

order isoparametric shape functions are used for Nx
aðXÞ and linear isoparametric shape functions are chosen for NC

a ðXÞ and
Nsm

a ðXÞ [cf. Fig. 2]. This interpolation scheme gives sufficient accuracy for the qsm/qXJ effect in Eq. (41) yet does not
introduce too many redundant DOF which may result in singular Jacobian matrices (Zienkiewicz and Taylor, 2000).

Substitution of Eq. (48) into (45) leads toX
a

�

Z
V0

sPK1
Ji

@Nx
a

@XJ
dV0þ

Z
S0

TiUNx
a dS0þ

Z
V0

BiUNx
a dV0

� �
duai ¼ 0: ð49Þ

The nodal force which is work-conjugate to duai is, therefore,

Fuai
ðtÞ ��

Z
V0

sPK1
Ji

@Nx
a

@XJ
dV0þ

Z
S0

TiUNx
a dS0þ

Z
V0

BiUNx
a dV0, ð50Þ

where the stress is given by Eq. (46). By the same token, the residual associated with the dCS
aðS¼ G,HÞ DOF is

FCS
a
ðtÞ � �

X
b

kab
_C

S

bþ

Z
V0

JS
K

@NC
a

@XK
dV0þ

Z
V0

RS
bNC

a dV0þ

Z
S0

QSNC
a dS0, ðS¼ G,HÞ, ð51Þ

where kab �
R

V0
NC

a NC
b dV0 is the consistent capacity matrix.

Finally, substitution of Eq. (48) into the constraint condition in Eq. (44) yields the requirementX
a

Z
V0

detðFÞ½detðFÞ=JSF
�1�sm=K�Nsm

a ðXÞ dV0dsa
m

	 

¼ 0: ð52Þ
Fig. 2. The mixed finite element used to calculate deformation/interdiffusion coupling in alloy-based electrodes. Second-order isoparametric shape

functions are used for displacement and linear isoparametric shape functions are used for concentration and pressure. The corner nodes have

displacement, concentration and hydrostatic stress DOF and the edge nodes only have displacement DOF.
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The residual associated with the dsa
m DOF is, therefore,

Fsa
m
ðtÞ ��

Z
V0

detðFÞ½detðFÞ=JSF
�1�sm=K�Nsm

a dV0: ð53Þ

Now, the deformation/diffusion coupling problem had been reduced to a set of nonlinear ODEs that must be satisfied
for all nodes

Fuai
ðtÞ ¼ 0, Fsa

m
ðtÞ ¼ 0, FCS

a
ðtÞ ¼ 0: ð54Þ

The first two equations in (54) are simply non-linear algebraic equations. To solve the third, we need to further
discretize the time variable. For increment (tn,tnþ1), we use the unconditionally stable backward Euler integration scheme,
i.e.,

FCS
a
ðtnþ1Þ ��

X
b

kab
CS

bðtnþ1Þ�CS
bðtnÞ

Dtnþ1
þ

Z
V0

JS
K ðtnþ1Þ

@NC
a

@XK
dV0þ

Z
V0

RS
bðtnþ1ÞN

C
a dV0þ

Z
S0

QS
ðtnþ1ÞN

C
a dS0 ðS¼ G,HÞ, ð55Þ

where Dtnþ1�tnþ1�tn is the time increment of interval (tn,tnþ1). The diffusion fluxes JS
K , body source/sink RS

b and surface
influx QS should be evaluated at the end of (tn,tnþ1), as indicated by Eq. (55). The first two equations in (54), on the other
hand, can be discretized by simply evaluating Eqs. (50) and (53) at time tnþ1, i.e.,

Fuai
ðtnþ1Þ ¼ 0 and

Fsa
m
ðtnþ1Þ ¼ 0:

(
ð56Þ

The 3D mixed finite element framework is implemented using the UEL interface of ABAQUS Standard 6.10. Gaussian
quadrature is used to integrate the residuals, with 27 integration points for Fuai

and eight integration points for FCS
a

and Fsa
m

.
Since the well-know Newtown iteration method is used by ABAQUS to solve the non-linear algebraic equations in (55) and
(56), Jacobians of Fuai

, FCS
a

and Fsa
m

with respect to nodal variables at tnþ1 are needed. The derivation of these Jacobians is
standard and is not elaborated here.

4. Stress relaxation in Li/Si nanowire electrodes due to host diffusion

The electric and mechanical properties of Li/Si alloy are highly dependent on the lithium concentration and state of
amorphization (Kim et al., 2010, 2011; Shenoy et al., 2010). Although crystalline silicon is highly brittle, nano-sized Li/Si
alloy can be highly ductile (Hertzberg et al., 2011). This ductility is desirable since it relieves stresses and reduces the
possibility of crack development (Zhao et al., 2011a). Characteristics of the diffusion kinetics, especially the diffusivities, in
Li/Si has also been studied extensively (Ding et al., 2009; Pell, 1960; Ruffo et al., 2009; Xie et al., 2010). In particular, first
principle calculations indicate that the mobility of silicon in Li/Si can be non-negligible, with the diffusivity ratio DSi/DLi

being �0.5 at 1050 K (Kim et al., 2011). Very recently, Johari et al. (2011) calculated the diffusivity of both Li and Si in
silicon-based electrodes at room temperature and found that the diffusivity ratio in a-Si falls into the range of DSi/
DLi
¼0.8�10�2–1.39�10�2. As will be demonstrated by the mixed FE calculations later in this paper, even such low DSi/

DLi values have significant impact on the evolution of stresses, primarily because of the chemical interactions between the
species and the effect of stress gradient on interdiffusion. It should be noted that the study by Johari et al. was conducted
on Li/Si systems with the composition of Li1.0Si. For higher xLi, DSi/DLi could be even higher since more Si–Si covalent bonds
are weakened or broken.

Here we analyze the implication of a small but non-zero DSi in amorphous Li/Si electrodes (host H¼Si and guest G¼Li)
using the mixed FE method developed. One focus of the analysis is the relative importance of the mechanical driving force
[Eq. (41)] and the chemical driving force [Eq. (40)] for host atom migration.

4.1. Migration of host atoms in Li/Si nanowire electrodes

We consider a cylindrical Li/Si nanowire [inset of Fig. 3(a)] with radius r0¼250 nm when fully discharged. This fully-
discharged state is taken to be the Lagrangian reference state. The NW is charged from its outer cylindrical surface at a
constant Lagrangian lithium influx QLi [cf. Eq. (47)]. Under galvanostatic conditions,

QLi
¼

1

2
r0CSi

0 xmax
1

T0
, ð57Þ

where xmax ¼ 4:4 is the maximum charging limit for lithium per silicon, CSi
0 ¼49.3 atoms/nm3 is the silicon concentration in

fully discharged state (the density of pure amorphous Si is 2.30 g/cm3) (Szabadi et al., 1998), and T0 is the nominal time
required to attain full charge. In this paper, we take T0¼1 h (i.e. at 1C charging rate). End effects are neglected because the
aspect ratio of the NW is assumed to be very large. Numerically, this is achieved by forcing the top and bottom surfaces to
remain flat using the multi-point constraint (MPC) functionality in ABAQUS.

A linear composition–expansion curve (x¼xLi/xSi vs. J SF curve under fixed CSi) with constant partial atomic volumes
OSiðSFÞ

¼ 1=CSi
0 ¼20.3 Å3 and OLi (SF)

¼14.3 Å3 (Beaulieu et al., 2003; Gao and Zhou, 2011) is used. Recent calculations by
Huang and Zhu indicates that the x� JSF relationship could be non-linear (Huang and Zhu, 2011). Here, a linear x� JSF



Fig. 3. Concentration and stress profiles for a Li/Si NW with radius r0¼250 nm, thermodynamic factor F¼10 and diffusivity ratio DSi/DLi
¼0.02. The

charging rate is 1C and the initial composition is Li2.2Si. (a) Normalized Lagrangian silicon concentration profiles at different stages of charging, the

normalization is relative to CSi
0 . The radial coordinate r is measured in the current configuration. The inset shows the NW charged under galvanostatic

conditions at a constant surface influx QLi. The z-axis of the cylindrical coordinate system is along the NW axis. (b) Profiles of normalized Lagrangian Li

concentration, the normalization is relative to CSi
0 . (c–g) Profiles of radial, hoop and azimuthal stress components and the hydrostatic and von Mises

invariants. (h–i) Hydrostatic and von Mises stresses normalized by the composition-dependent elastic modulus (Sethuraman et al., 2010).
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relation is used in order to simplify the formulation and interpretation of numerical results and to focus on the implications
of non-zero host diffusivity. The concentration-dependent elastic properties are K¼K(x)¼(12.46xþ65.44)/(1þx)
GPa and G¼G(x)¼(7.63xþ35.51)/(1þx) GPa (Shenoy et al., 2010). Reported DLi values in Li/Si typically range from 10�14 to
10�8 cm2 s�1 (Ding et al., 2009; Johari et al., 2011; Pell, 1960; Ruffo et al., 2009; Xie et al., 2010). Here, we take
DLi
¼10�12 cm2 s�1. Although the predicted stress levels depend on the value of DLi according to the scaling law of

sp1/DLi (Christensen and Newman, 2006), the key issue in this paper, i.e., the effect of host diffusion, is not controlled
by DLi itself but by the diffusivity ratio DSi/DLi. This host-to-guest diffusivity ratio in amorphous Si electrodes at room-
temperature is found by Johari et al. (2011) to be DSi/DLi

¼0.8�10�2–1.39�10�2 for Li1.0Si. Since silicon–silicon bonding
is much weaker in high-xLi states (Kim et al., 2011), DSi could be even larger at higher xLi. Indeed, at very low xLi, DSi

approaches the silicon self-diffusivity which is negligible compared to DLi. We therefore start our simulation at the half
charged state of Li2.2Si in order to more realistically capture the effect of Si migration. Specifically, at t¼0 the NW is
assumed to be a homogeneously half-charged alloy with CSi

t ¼ 0 ¼ CSi
0 and CLi

t ¼ 0=CSi
t ¼ 0 ¼ 2:2. It should be noted that the

Lagrangian reference state (upon which CLi and CSi are measured) here is taken to be the fully discharged configuration
instead of the half-charged configuration at t¼0. A parametric study is carried out by systematically varying the DSi/DLi

ratio from 0.005 to 0.05 while keeping DLi
¼10�12 cm2 s�1 constant.

It should be noted that the diffusivities (DLi and DSi) might depend on the local stress state. Haftbaradaran et al. (2010)
considered the activation barrier shift DEb for lithium diffusion due to stresses (Aziz et al., 1991) and showed that the stress
effect could slow down lithium diffusion through DLi

¼DLi
0 expð�DEb=kByÞ. While stress-induced activation barrier change DEb

is more important under very high stresses, stress development and diffusion mainly couple through the chemical potential for
moderate stresses (Yu and Suo, 2000). For Li diffusion in silicon, it has been shown that 9DEb/kBy9E1 only when 9sb9 reaches as
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high as 1 GPa, otherwise, the factor expð�DEb=kByÞ is negligible (Gao and Zhou, 2011). For simplicity, the effect of the factor
expð�DEb=kByÞ is not considered in this paper. This approximation should be valid at least for the stress levels considered in
this paper.

Fig. 3(a) and (b) shows the profiles of the normalized Lagrangian concentrations CSi
ðr,tÞ=CSi

0 and CLi
ðr,tÞ=CSi

0 for a NW
with r0¼250 nm, F¼10 and DSi/DLi

¼0.02. The Li concentration CLi(r,t) quickly (in less than �12 s) reaches a profile
corresponding to the so-called long-term solution obtained by Gao and Zhou (2011), i.e., for most of the charging process
(times beyond �12 s), the distribution of CLi(r,t) effectively increases uniformly over the entire wire radius, with the shape
of the profiles largely unchanged. This observation is consistent with the stress profiles in Fig. 3(c–g) which show that the
stress distributions for 12 s and 30 s essentially match. It should be pointed out that, strictly speaking, the shape of CLi(r,t)
profiles does evolve even after 12 s, and the stresses at 1200 s is lower than those at 12 s and 30 s. However, this slow
modulation of CLi(r,t) is due to composition-induced material softening (dependence of K and G on Li/Si composition),
change of NW size, and Si migration, but not due to the transience of the Li diffusion process. The characteristic time tLi for
reaching the steady-state gradient of CLi(r,t) is very short compared with the overall charging time and can be estimated to
be tLi � r2=l2

1DLi
ef f according to the analytical solution for the case of DSi

¼0 (Gao and Zhou, 2011). Here,
r� ½JSF

ðCSi
t ¼ 0,CLi

t ¼ 0Þ�
1=3r0 is approximately the NW radius during the initial stage of charging, l1¼3.8317 is the first root

of the first-order Bessel function, and

DLi
ef f ¼DLi F

1þCLi
t ¼ 0=CSi

t ¼ 0

þ
1

kBy
2EðOLiðSFÞ

Þ
2

9ð1�nÞ
CLi

t ¼ 0

JSF
ðCSi

t ¼ 0,CLi
t ¼ 0Þ

" #
ð58Þ

is the effective diffusivity of Li. In the above relation, E and n are Young’s modulus and the Poisson ratio, respectively. For
F¼10, DSi

¼0 and DLi
¼10�12 cm2 s�1, tLiE2.7 s; hence long-term profiles with a steady-state shape can be expected for

CLi(r,t) when t42tLiE5.4 s (Gao and Zhou, 2011), consistent with what is seen in Fig. 3.
Fig. 4. Concentration and stress profiles for a NW with radius r0¼250 nm, thermodynamic factor F¼90 and diffusivity ratio DSi/DLi
¼0.02. The NW

radius, rate of charge (1C) and an initial composition (Li2.2Si) are the same as those in Fig. 3. (a) and (b) Normalized Lagrangian concentration profiles of

silicon and lithium, respectively. (c–g) Profiles of radial, hoop, azimuthal, hydrostatic and von Mises stresses. (h–i) Hydrostatic and von Mises stresses

normalized by the composition-dependent elastic bulk and shear modulus.



Fig. 5. The competition between the effects of chemical mixing and mechanical stress on the diffusive migration of host (Si) in Li/Si. (a) When lithium is

inserted from the surface, compressive stresses develop near the surface and tensile stresses develop at the center. (b) Lithium diffuses from surface to

center. (c) When the chemical effect dominates, the flow of the host (Si) is from the center to the surface of the NW. (d) When the mechanical effect

dominates, the flow of the host (Si) is from the surface to the center. Realistic scenarios for Li/Si almost certainly entail (d).
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The transient evolution of CSi(r,t) [Fig. 3(a)], on the other hand, is much slower than the transient evolution of CLi(r,t). As
the charge progresses, CSi at the NW surface decreases from the initial value and CSi at the center increases from the initial
value. This indicates that Si atoms slowly migrate from the surface towards the center. Like CLi, CSi also evolves towards a
long-term steady-state profile, except that the time required by this transient evolution is longer than that for CLi (�12 s),
as confirmed by the DSi/DLi

¼0.02 curve in Fig. 6(a). The shape of the steady CSi profile is shown by the curve for t¼1200 s
in Fig. 3(a). During the initial charging stage (to12 s), the stresses increase and the development is similar to that for the
case with DSi

¼0 (Gao and Zhou, 2011). After the initial stage (t412 s), the stresses slowly decrease. As seen in Fig. 3(c–g),
all three stress components (radial sr, hoop sy and longitudinal sz) and the two stress invariants (hydrostatic stress sm and
the Mises equivalent stress smises) are lower at t¼1200 s than at t¼12 s. One reason for the decrease in stresses is
composition-change-induced softening of Li/Si alloy. Specifically, the lower elastic modulus (K and G) values at higher xLi

levels cause the stresses to be lower. Nonetheless, this trend remains even if the stresses are normalized by the
composition-dependent bulk and shear modulus, as sm/K and smises/G are still significantly lower at t¼1200 s than at
t¼12 s [Fig. 3(h) and (i)]. This decrease of sm/K and smises/G is caused by the diffusive migration of the host (Si) atoms.
Since Si migrates from the surface to the center, JSF increases at the center and decreases at the surface relative to the case
with DSi

¼0, leading to lower levels of ee and, consequently, the relaxation of the stresses.
To analyze the effect of the thermodynamic factor F, the results of a case with F¼90 and DSi/DLi

¼0.02 are shown in
Fig. 4. The NW diameter, charging rate and diffusivities are the same as those in Fig. 3. The profiles of CLi [Fig. 4(b)] and the
stress components [Fig. 4(c–i)] are qualitatively similar to those for the F¼10 case in Fig. 3 for to30 s, primarily because
Si diffusion is too slow to have a significant influence during the initial stage, although the magnitudes of these quantities
are understandably different as the effective diffusivities are dependent on F. The profiles of CSi, however, are distinctively
different. In Fig. 4, CSi increases at the surface and decreases at the center; indicating Si migration is from the center to
the surface. This is directly opposite to what is seen in Fig. 3. The opposite directions of Si migration lead to significant
differences in the stress distributions in the NW. Specifically, at the higher thermodynamic factor value of F¼90
(higher tendency to chemically mix between the two species), the stresses at t¼1200 s are higher than the stresses at t¼12 s
and t¼30 s [Fig. 4(c–g)]. In contrast, at the lower thermodynamic factor value of F¼10, the stresses at t¼1200 s are lower
than the stresses at t¼12 s and t¼30 s. The same observations are made for the normalized stresses sm/K and smises/G
[Fig. 4(h–i)] as well.

The migration of Si is different between the F¼10 and F¼90 cases due to the competition between the chemical
contribution [Eq. (40)] and the mechanical contribution [Eq. (41)] to the diffusive flux of silicon. The chemical contribution
JSi,chem

p�@xSi=@X drives Si flow from high xSi regions (center) towards low xSi regions (surface), causing the composition field
to homogenize. The mechanical contribution JSi,mech, on the other hand, is proportional to qsm/qX and, therefore, drives Si flow
from compressive regions (surface) towards the stretched regions (center). The magnitude of JSi,chem is proportional to F while
the magnitude of JSi,mech is controlled by OSi (SF). For F¼90, 9JSi,chem949JSi,mech9 and JSi

¼ JSi,chem
þ JSi,mech points towards the

surface. For F¼10, 9JSi,chem9o9JSi,mech9 and JSi points towards the center. This competition between the chemical effect and the
mechanical effect is illustrated in Fig. 5. Here, the value of F can be estimated from the open-circuit potential UOCP

¼UOCP(xLi)
data via (Gao and Zhou, 2011)

F¼�ðe=kByÞxLidUOCP=dxLi: ð59Þ



Fig. 6. Evolution of silicon concentration and stress invariants at the NW center (denoted by c) and surface (denoted by s). The NW configuration, charging rate,

and thermodynamic factor F are the same as those in Fig. 3. The only difference is in DSi/DLi which is varied here. (a) Lagrangian silicon concentration normalized

by CSi
0 . (b) Hydrostatic stress normalized by bulk modulus K; (c) details of (b) in the first 200 s. (d) von Mises stress normalized by shear modulus G. (e) Details of

(d) in the first 200 s.

Y.F. Gao et al. / J. Mech. Phys. Solids 61 (2013) 579–596592
It should be noted that, however, experimentally measured UOCP(xLi) curves for Li/Si are associated with significant
hysteresis (Chevrier and Dahn, 2010) which makes accurate estimate of the quasi-equilibrium value of dUOCP/dxLi difficult.
Using the experimental OCP data of Chandrasekaran et al. (2010) and Eq. (59), we estimate that 1rFr40 for 2.2o
CLi/CSio4.4 (the composition range studied in this paper). Therefore, the scenario in Figs. 4 and 5(c) reflects the outcome
for an unrealistically high value of F for Li/Si; instead, the diffusive migration of silicon always leads to stress relaxation in
Li/Si and causes Si to migrate along the direction of sm gradient [Fig. 3(a)].

4.2. Effect of DSi/DLi and F on stress relaxation

Fig. 6 shows how the diffusivity ratio DSi/DLi affects the evolution of the stresses and silicon concentration when the
thermodynamic factor is kept at F¼10. The NW configuration is the same as that in Figs. 3 and 4, with a diameter of
250 nm when fully discharged. The charging rate is 1C under galvanostatic conditions. The normalized silicon
concentration CSi=CSi

0 , normalized hydrostatic stress sm/K and normalized von Mises stress smises/G are plotted against
time at the NW surface and center (denoted as s and c, respectively). For all DSi/DLi ratios from 0.005 to 0.05, the migration
of Si is from the surface to the center, as a result of the dominant effect of JSi,mech [Fig. 6(a), Eqs. (39)–(41)].

At the very low diffusivity ratio of DSi/DLi
¼10�8, the migration of silicon is essentially negligible. Under this condition,

sm/K and smises/G only change slightly after the initial stress buildup. The analytical solution for DSi
¼0 during the so-called

long-term response period after the initial transient buildup is (Gao and Zhou, 2011)

sz ¼�
1

3

1

JSF

OLiðSFÞ

OSiðSFÞ

E

1�nUDx,

sy ¼
1
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1
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OLiðSFÞ
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1�n �Dxþ
1
~r 2
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~rDx d~r
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sr ¼�
1

3

1
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OLiðSFÞ

OSiðSFÞ

E

1�n
1

~r2

R ~r
0
~rDx d~r ,

9>>>>>>>>>>=
>>>>>>>>>>;

ð60Þ

where Dxðr,tÞ � x�x can be regarded as the composition inhomogeneity, x� CLi=CSi
0 , xðtÞ ¼ 4:4ðt=T0Þ is a measure for

the average composition over the NW radius and ~r � r=f½JSF
ðCSi

0 ,CLi
Þ�1=3r0g is the nondimensionalized radius. Obviously, the

long-term stresses for DSi
¼0 depend on two factors. The first factor is NW size. As JSF increases due to Li insertion, the stresses

may decrease even when Dx does not change. The second factor is the effective Li diffusivity DLi
ef f , which depends on the elastic

modulus [Eq. (58)]. As Li concentration increases, the Li/Si alloy softens, leading to lower DLi
ef f and causing the composition

inhomogeneity Dx to change accordingly.
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Using the numerical solution for DSi/DLi
¼10�8 or the analytical solution for DSi

¼0 as the reference, we can quantify the effects
of Si migration on stress relaxation. The normalized stress invariants sm/K and smises/G (note that K and G are concentration-
dependent and, therefore, decrease with time) first increase during the ramp up of the CLi profile and then decrease as the effect of
Si diffusion kicks in. The stresses at the center follow similar trends as the stresses near the surface but lag behind the stresses at
the surface because the gradient of the hydrostatic stress 9qsm/qX9 [hence 9JSi,mech9 according to Eq. (41)] is higher near the surface
than at the center. Note that for DSiE0, long-term sm/K and smises/G change only slightly after t¼12 s. In contract, the stresses
decrease significantly more rapidly at the higher values of DSi. Specifically, for DSi/DLi

¼0.02, the values of sm/K and smises/G at the
surface at t¼1200 s are both �20% lower than the corresponding values for DSiE0, as well as their corresponding peak values at
tE12 s. The reductions clearly show that modest mobility of the host atoms (low DSi value of 2�10�14 cm2 s�1 or DSi/DLi

¼0.02)
can cause stress reductions on the order of �20% relative to the case without Si mobility. It should be noted that the stress levels
here are significantly lower than the yield stress of Li/Si of 1.0–1.75 GPa (Sethuraman et al., 2010). The stress relaxation due to
host migration is separate from and in addition to the effects of stress-enhanced diffusion of Li (Gao and Zhou, 2011) and
plasticity (Zhao et al., 2011a). Obviously, it can play an important role at high Li concentration levels even when stresses are below
the yield threshold of the material.

It is important to note that, for all the DSi/DLi values analyzed, CSi
surf ace=CSi

0 at the surface converges to the same steady-state
surface value of �0.996 and CSi

center=CSi
0 at the center converges to the same steady-state value of �1.004. The relaxation

(or characteristic) time tSi for silicon redistribution can be estimated using the time for ðCSi
center�C

Si
Þ=CSi

0 to reach half of its
steady-state value, here C

Si
¼ CSi

0 is the average silicon concentration in the NW. According to Fig. 6(a), tSiE210 s for
DSi
¼2�10�14 cm2 s�1 (DSi/DLi

¼0.02). The convergences of CSi
surf ace=CSi

0 and CSi
center=CSi

0 are not by chance. They indicate that Si
migration always tends to lead to a steady state which is the same regardless of the value of DSi, as long as DSi40. This steady
state is reflected not only in CSi=CSi

0 , but also in the stresses. Specifically, sm/K converges to the same level of stbtSi

m =K at the
center and the same level of �stbtSi

m =K at the surface [Fig. 6(b)] at tbtSi(e.g., t/tSi43). Fig. 6 shows that stbtSi

m =K ¼ 0:00054 for
F¼10. A similar convergence of smises/G at long times is seen in Fig. 6(d). It is important to note that the steady-state values of
CSi

tbtSi=CSi
0 for the surface and the center do evolve slightly as t further increases. This modulation of the steady-state values of

CSi
tbtSi=CSi

0 at the surface and the center is because of the softening of the elastic modulus as xLi increases, which lowers the
mechanical driving force for silicon migration [Eq. (41)]. As seen in Fig. 6(b) and (d), the normalized stresses sm/K and smises/G
decrease accordingly after the transient development of the CSi profile. Parametric study shows that the characteristic time tSi for
achieving the steady state CSi

tbtSi=CSi
0 distribution decreases as DSi/DLi increases. This is understandable because tSi

p1/DSi. It
should be noted that, however, tSi cannot be simply estimated as r2=l2

1DSi using the tracer diffusivity DSi, because such an
estimation does not reflect the fact that Si diffusion is affected by the migration of Li through the stress driving forces and the Li–Si
chemical interactions. Indeed, r2=l2

1DSi
� 2� 103 s for DSi

¼2�10�14 cm2 s�1 if the diffusion of Si occurs independently by itself
without the presence of Li and without SED. Rather, it is the effective diffusivity DSi

ef f of Si, that determines tSi. Although a closed-
form solution for DSi

ef f may not be easily obtained [in contrast, DLi
ef f which is analytically quantified in Eq. (58)], the numerical

results here indicate that DSi
ef f bDSi due to the strong coupling between stress and interdiffusion, at least for the case of F¼10.

Fig. 7 illustrates the effect of F at a constant diffusivity ratio of DSi/DLi
¼0.02. Again, the NW radius is 250 nm at the fully

discharged state and the charging rate is 1C. The most important observation is that the direction of Si migration changes as F
changes. Specifically, Si migrates from the surface to the center for 5oFo40 and from the center to the surface for F¼90
[see Fig. 7(a)]. The reversal occurs at a critical value Fcr, when JSi,mech and JSi,chem happen to cancel each other out. It should be
noted that 9JSi,mech9 depends on the magnitude of the elastic modulus, which decreases as lithium concentration increases.
Therefore, the critical value Fcr is not a constant. A typical value is found to be approximately Fcr¼50. When F is close to
Fcr¼50, silicon migration is insignificant since JSi,mech

þJSi,chem is very small, although it may not be exactly zero.
When FoFcr, stresses first increase and then decrease gradually after reaching respective peaks [Fig. 7(b–e)]. When

F4Fcr, on the other hand, Si migrates in the opposite direction and stresses increase monotonically after the initial fast
buildup. For 5oFo40, CSi=CSi

0 evolves towards a F-dependent value of CSi
tbtSi=CSi

0 . The difference between the center and
surface values of CSi

tbtSi=CSi
0 is larger when F is smaller. The peak values of stresses are higher at lower F, i.e., the stress

relaxation due to Si migration is more significant when the thermodynamic factor is lower (or the host and guest are less likely
to chemically mix).

Interestingly, although stresses evolve significantly differently for F4Fcr and FoFcr, they all converge to the same
values [Fig. 7(b) and (d)] at sufficiently long times. The similar convergence behavior has also been seen in Fig. 6(b) and (d).
A comparison between Fig. 7(b) and (d) with Fig. 6(b) and (d) reveals that the long-term stress limits are quite universal,
regardless of the values of F and DSi/DLi.

An analysis provides useful insight. As the distribution of CSi approaches the steady-state, the silicon flux vanishes, i.e.,

JSi
� 0 at tbtSi ð61Þ

Eqs. (39) and (61) lead to

FrXxSi
tbtSi�

xSi
tbtSiO

SiðSFÞ

kBy
rXstbtSi

m � 0 at tbtSi: ð62Þ

This equation is independent of DSi as it concerns the steady-state solution of xSi for tbtSi. Eq. (62) shows that xSi, hence
CSi, for tbtSi does depend on the value of F, providing a direct proof for what is seen in Fig. 7(a). On the other hand, since
the spatial gradient rCLi(r,t) remains approximately a constant (the CLi profile ‘‘shifts’’ upward without changing its shape)



Fig. 7. Evolution of silicon concentration and stress invariants at the NW center (denoted as c) and surface (denoted as s) at different values of F between

5 and 90. The diffusivity ratio is kept at DSi/DLi
¼0.02. All other parameters are the same as those in Fig. 3. (a) Lagrangian silicon concentration CSi

normalized by CSi
0 . (b) Hydrostatic stress sm normalized by bulk modulus K; (c) details of (b) in the first 200 s. (d) von Mises stress smises normalized by

shear modulus G. (e) Details of (d) in the first 200 s.
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at tbtLi (Gao and Zhou, 2011)

rXJLi
¼�

@CLi

@t
¼�

4:4CSi
0

T0
¼ constant, at tbtLi, ð63Þ

where 4:4CSi
0 is the Li concentration at the fully charged state and T0 is the total galvanostatic charging time to attain full

charge. If high-order terms are neglected, Eqs. (63) and (39) lead to

DLirXU �FrXxLiþ
OLiðSFÞ

kBy
xLirXsm

" #
¼ constant at tbtLi ð64Þ

Eqs. (62) and (64) and the fact that tSi4tLi combine to give

DLirXU �FrXðx
LiþxSiÞþ

OLiðSFÞxLi

kBy
þ
OSiðSFÞxSi

kBy

 !
rXsm

" #
¼ constant at tbtSi: ð65Þ

Since rX(xLi
þxSi)¼0, the above leads to a F-independent equation for sm in the form of

DLirXU
OLiðSFÞxLi

kBy
þ
OSiðSFÞxSi

kBy

 !
rXsm

" #
¼ constant at tbtSi: ð66Þ

Eqs. (62) and (66) indicate that the steady-state hydrostatic stress depends on neither DSi/DLi nor F. By extension via
Eqs. (31), (34) and (36), all stress components at the steady-state are independent of DSi/DLi and F, as long as stressing is
entirely due to concentration inhomogeneity and no external mechanical load is applied, as is the case of the free-standing
NW analyzed here. It is important to note that the peak values of the stresses do depend on F, as Fig. 7 shows. Also,
the relaxation time needed for the solutions to converge to the steady-state depends on DSi/DLi. Again, for F¼10 and
DSi/DLi

¼0.02 the stress reduction from the level without Si migration can amount to 20%. Even for the small diffusivity
ratio of DSi/DLi

¼0.005, the host-diffusion-induced stress relaxation is non-negligible [Fig. 6(b) and (d)]. Therefore, account
should be taken for host migration in the analyses of Li/Si electrodes.

5. Concluding remarks

A finite deformation framework is developed and used to model the coupled mechanical–diffusional response of Li
alloy-based electrodes under conditions of electrical equilibrium. The framework accounts for elastic material response
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and the diffusion of both guest and host species. A novel numerical framework with mixed finite elements is developed to
solve the underlying equations, allowing the coupled mechanical and diffusional processes to be analyzed. To evaluate the
gradient of pressure required in the calculation of the diffusion fluxes, the method takes displacement, host/guest
concentrations and hydrostatic stress as independent nodal variables and uses a Lagrangian multiplier to ensure that the
hydrostatic stress field satisfies the constitutive equations.

Calculations carried out focus on the effects of host migration on the relaxation of stress and changes in the
concentrations of both the host and guest species. It is found that diffusion of the host atoms can have a significant impact
on stress, primarily because of the chemical interactions between the species and the effect of stress gradient on
interdiffusion. In particular, under conditions of pure elastic deformation the diffusion of Si atoms can cause stress
reductions up to 20% with the modest diffusivity ratio of DSi/DLi

¼1/50 (DLi
¼100 nm2/s and DSi

¼2 nm2/s). For amorphous
Li/Si alloys, the mechanical driving force dominates the chemical driving force, resulting in the migration of Si in the
direction of the gradient of the hydrostatic stress rsm or from the surface to the center of cylindrical electrodes. The
analysis has also shown what the behavior would be for alloys with (perhaps unrealistically) high thermodynamic factors.
The results indicate that the effect of interdiffusion on stress relaxation can be important even when the stress levels are
below the yield threshold of the material.

The migrations of the host and guest introduce two time scales. The time scale for host migration is much longer than
the time scale for guest migration, allowing the distribution of guest concentration to reach its own steady state which is
slowly modulated by other factors, especially the migration of the host. The time scale for host migration determines the
rate at which the ultimate steady state of host concentration and all other field quantities are attained. The distribution of
Si concentration is determined by the thermodynamic factor which measures the tendency for the host and guest to
chemically mix, but the steady-state stress distribution depends on neither DSi/DLi nor the thermodynamic factor.

Finite diffusivity values of host atoms may have further implications besides the relaxation of stresses. For example, in Li/Si
and Li/Ge nano-electrodes, cycling-induced formation of nano-pores indicates that the host material has been irreversibly
moved away from the voided regions (Hu et al., 2011; Liu et al., 2011a). If reversible expansion and elastic deformation were
the only mechanisms for material deformation, the nano-pores would not form because the host network must revert back to
its original configuration upon unloading. Two mechanisms have been proposed to account for the irreversible migration of
host atoms. The first is inelastic flow (a form of continuous convection) driven by deviatoric stresses during which material
flows in the normal direction of the nucleated pore, leading to void enlargement (Hu et al., 2011). The second mechanism is
vacancy aggregation during selective dealloying, which involves diffusive migration of host atoms and allows nucleated voids
to coalesce and grow (Liu et al., 2011a). Either or both mechanisms might be relevant, their relative significance depends on the
specific material system. With minor adaptation, the continuum framework developed here can be used to delineate the
influences of these mechanisms on void development under various conditions.
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