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A finite element model was developed at the single fiber length scale to predict the quasi-static pullout
response of individual fibers from cementitious composites. The model accounts for energy dissipation
through granular flow of the interfacial transition zone (ITZ) and matrix, plastic work in the fiber, and
frictional dissipation at the fiber–ITZ interface. The considered fiber morphology was a triangular cross
section that had been uniformly twisted along the fiber length. The model was calibrated to published
experimental data for fiber pitches of 12.7 and 38.1 mm/revolution pulled from cement mortar with a
44-MPa unconfined compressive strength. The model was used to investigate slip-hardening behavior,
tunneling of the cement mortar, in situ pullout behavior of helically twisted fibers at a crack plane,
and provide an alternate explanation for the pullout response of twisted fibers from a 84-MPa unconfined
compressive strength matrix containing silica fume. Calculations show that twisted fibers can provide up
to 5 times the peak pullout force and 10 times the total work compared with straight fibers and infer
work-hardening behavior during fiber pullout. The findings indicate that the tailoring of fiber morphol-
ogy and control of constituent properties are important avenues for achieving significant improvements
in the performance of fiber-reinforced cementitious composites.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The granular nature of concrete elicits a characteristic quasi-
brittle behavior in tension. This undesirable behavior is often mit-
igated by embedding steel rebar within concrete; however, steel
rebar within concrete presents new problems. For example, steel
rebar reinforcement is relatively labor intensive to install, suscep-
tible to corrosion through chloride ion transport, and unable to ar-
rest cracks prior to the crack intersecting the steel rebar.
Furthermore, the performance of rebar reinforced composites is
highly susceptible to the placement of the rebar within the com-
posite. An alternate reinforcement approach is to replace steel re-
bar with short, discontinuous fibers, resulting in Fiber Reinforced
Cementitious Composites (FRCCs). Although they exhibit ductility
and toughness [1], FRCCs’ limitations in tensile loading require fur-
ther investigation.

The tensile response of FRCCs depends on six factors: fiber vol-
ume fraction, fiber orientation, fiber shape, fiber material proper-
ties, cementitious material properties, and properties at the
fiber–matrix interface. For steel fibers, it is desired to reduce the fi-
ber volume fraction due to the relative expense of steel fibers com-
pared to the cementitious matrix. Furthermore, fiber volume
fractions greater than 2–4%, depending on the fiber’s length to
diameter ratio, may introduce porosity and fiber clumping during
mixing [2]. Assuming a random orientation for short discontinuous
fibers within a structure, the other four factors provide avenues for
improving the tensile response of FRCCs.

Tensile responses of FRCCs at the mesoscale have been charac-
terized by either direct tension tests of dog bone specimens (cf.
Kim et al. [3]) or the flexural bending tests, defined by the Ameri-
can Society for Testing and Materials (ASTM) C1609 testing stan-
dard [4]. Both tests allow researchers to infer structure–
property–performance relations of FRCCs by systematically chang-
ing the structure and material properties of the constituents. For
example, Kim et al. [3] reported that FRCCs containing a 2% volume
fraction of twisted fibers, defined as a fiber with a polygonal cross
section that has been twisted along its primary axis, had between
25% and 49% greater mean first cracking strengths in direct tension
tests than FRCCs containing 2% hooked fibers for matrices with
unconfined compressive strengths between 28 and 84 MPa. Results
for flexural bending tests indicate similar dependencies on the
shape of the fiber. For example, Kim et al. [5] showed that FRCCs
containing 1.2% fiber volume fractions of twisted fibers had a
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Nomenclature

a
�

back stress tensor

a
�

dev deviatoric back stress tensor

Af cross-sectional area of fiber
b internal friction angle
bi internal friction angle – ITZ
bm internal friction angle – matrix
c constant
C material constant - fiber
d cohesion under pure shear
ue equivalent fiber diameter
D
�

p plastic part of the rate of deformation tensor

~epl equivalent plastic strain – fiber
_e
�

pl plastic strain tensor
_~epl equivalent plastic strain rate – fiber
_�ep equivalent plastic strain rate
Ei elastic stiffness – ITZ
Ef elastic stiffness – fiber
Em elastic stiffness – matrix
F yield condition
F
�

deformation gradient tensor

F
�

e elastic deformation gradient tensor

F
�

n inelastic deformation gradient tensor

fi unconfined compressive strength – ITZ

fm unconfined compressive strength – matrix
G flow potential
c material parameter – fiber
_ci shearing rate (i = 1, 2)
ITZ interfacial transition zone
I
�

2nd rank identity tensor

K ratio of yield stress in triaxial tension to yield stress in
triaxial compression

Ki ratio of yield stress in triaxial tension to yield stress in
triaxial compression – ITZ

Km ratio of yield stress in triaxial tension to yield stress in
triaxial compression – matrix

_k plastic multiplier
Le fiber embedded length
Lfree fiber free length
mi Poisson’s ratio – ITZ
mf Poisson’s ratio – fiber
mm Poisson’s ratio – matrix
l coefficient of coulomb friction
p hydrostatic pressure
pcontact contact pressure at interface
q mises equivalent stress
qi mass density – ITZ
qf Mass density - fiber
qm mass density – matrix
r third invariant of deviatoric stress
ro yield stress – fiber
r
�

cauchy stress tensor

S
�

deviatoric stress
seq equivalent frictional stress
si shear stress at interface between two different materi-

als (i = 1, 2)
scrit critical frictional stress
t extended Drucker–Prager stress in meriodonal plane
u
�

displacement vector

x
�

deformed coordinate system

X
�

fixed reference coordinate system
wi dilation angle – ITZ
wm dilation angle – matrix
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13% greater mean modulus of rupture than FRCCs containing
hooked fibers. Flexural bending tests reported by Soroushian and
Bayasi [6] reported that FRCCs containing 2% volume fraction
straight smooth fiber had a 35% reduction in modulus of rupture
as compared to FRCCs containing 2% volume fraction off hooked fi-
bers with a similar length and diameter. Clearly, the geometry of a
fiber influences the tensile properties of FRCCs.

To understand why one fiber geometry is more effective than
another, single fiber pullout tests are used to characterize the pull-
out responses of fibers with different morphologies. As reported by
many researchers (e.g., Easley et al. [7]; Kim et al. [3]; Boshoff et al.
[8]; Cunha et al. [9]), a single straight, smooth fiber pulled in the
axial direction from a cementitious matrix exhibits three common
energy storage and dissipation stages: (1) an initial elastic storage
stage, in which the fiber undergoes relatively small displacements
before the peak force is reached; (2) a debonding stage, in which
the chemical bonds between the fiber and cementitious matrix
break, resulting in a drop in force; and (3) a friction-dominated
stage, in which the pullout force decreases monotonically as the fi-
ber pulls out. For straight, smooth fibers, the fiber length has a
strong influence on the peak pullout force. For example, Cunha,
Barros, and Sena-Cruz [9] reported a 100% increase in peak pullout
force when fiber length is increased from 20 mm to 30 mm. Addi-
tional studies were conducted by Chan and Chu [10] and Guerrero
and Naaman [11] to determine the effects of matrix constituents
on pullout behavior.

Analytical models of a single straight, smooth fiber being pulled
out of a matrix have been framed in terms of energy balance [12]
and equilibrium [13]. The equilibrium-derived analytical model
uses experimental data to determine five constants: bond modu-
lus, bond strength, constant frictional bond stress, and two decay-
ing frictional parameters. Numerically, Li and Mobasher [14] used a
two-dimensional axisymmetric framework containing three linear
elastic constitutive relations to simulate the three pertinent mate-
rials: fiber, interface, and matrix. The modeled mechanisms in-
clude fiber debonding and friction. A clamping pressure was
applied at the outer edge of the matrix to simulate shrinkage. Re-
sults were presented and compared to experimental data for the
first 0.1 mm of end slip.

Hooked fibers exhibit behaviors different from those of straight
fibers. As reported by Cunha et al. [9], a hooked fiber embedded
20 mm into a matrix shows a peak pullout force approximately
4.5 times that of a straight, smooth fiber embedded at the same
depth. Even though the peak pullout force of a hooked fiber in-
creases with the embedded length of the fiber, the increase is not
as pronounced as that for straight, smooth fibers [9]. In addition
to the three energy storage and dissipation mechanisms of straight,
smooth fibers, hooked fibers also dissipate energy via plastic work
during pullout. Although not a distinct mechanism, the residual
stress at a fiber’s hook appears to increase normal tractions and
ultimately the force required during the friction-dominated stage
of pullout.

An analytical model to predict the pullout force versus end slip
relation for hooked fibers was introduced by Alwan et al. [15], who
extended the model of straight, smooth fibers given by Naaman
et al. [13]. The model predicts four different characteristic
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responses depending on the end slip of the fiber. The first charac-
teristic response is a rapid increase in pullout load as the fiber
undergoes debonding. Second, the pullout force increases to a
maximum value and maintains the maximum value as both kinks
in the embedded end of the fiber respond as plastic hinges during
increased end slip. The third characteristic response occurs after
the furthest embedded kink of the hooked fiber completely passes
through the furthest kink of the fiber bed. At this point, the pullout
force decreases to a lower value until the fiber is completely re-
moved from the hooked part of the fiber bed, thus leading to the
characteristic fourth response: a friction dominated pullout similar
to a straight, smooth fiber.

Twisted fibers display behavior that is different from that of
either straight, smooth fibers or hooked fibers. The single fiber
pullout results in Naaman [16] indicate substantial differences in
end slip at maximum pullout force, maximum pullout force, and
pullout forces for end slips greater than the end slip at the maxi-
mum pullout force. During pullout, twisted fibers generate maxi-
mum pullout forces at end slips of 20–40% of the fiber’s
embedded length, whereas hooked and straight, smooth fibers
reach maximum pullout forces at end slips of approximately 10%
and less than 1% of the fiber embedded length, respectively. The
work-hardening behavior displayed by twisted fibers has impor-
tant implications for the distribution of damage throughout struc-
tural-level length scales [17]. The second difference is that twisted
fibers generate peak pullout forces on the order of three to five
times those of straight, smooth fibers, depending on the morphol-
ogy of the twisted fiber. The third difference is that twisted fibers
maintain pullout forces close to the maximum pullout force for
up to 80% of a fiber’s embedded length. These three differences
cause the total work for pullout of a twisted fiber to be eight to
ten times greater than that for a straight, smooth fiber [16]. Other
studies concerning twisted fibers have determined the influence of
matrix composition [11], the rate of pullout [3], and the number of
fiber strands [18]. Although Naaman and coworkers were first to
use twisted, polygonal, discontinuous, and randomly oriented fi-
bers, Menzel [19] documented similar improvement in the pullout
behavior of continuous steel rebar reinforcement placed in cemen-
titious matrices. Menzel’s results indicate that a helically threaded
rebar reinforcement sustains greater than 10 times the stress of a
straight, smooth rebar over the first 0.40 mm of end slip.

An analytical model to predict the pullout of a twisted fiber was
presented by Sujivorakul and Naaman [20], with complete details
given by Sujivorakul [21]. The analytical model assumes a homoge-
neous elastic matrix surrounding an elastic–plastic fiber. The mod-
el accounts for the fiber’s embedded length, cross-sectional shape,
pitch, untwisting torque, tensile strength of the fiber, and friction
between the fiber and the matrix. Calibration of the model requires
experimental data pertaining to the bond shear stress versus slip
relation, untwisting torque at the embedded tip of the fiber, and
a locking torque coefficient, each of which depend upon the pitch
of the fiber and the cementitious matrix surrounding the fiber. In
other words, for a given fiber and matrix, a different calibration
is required for each pitch and matrix. Although the analytical mod-
el has been used to predict the pullout force during the first 5 mm
of end slip, the model does not capture the experimentally ob-
served matrix tunneling, defined as the erosion of the matrix sur-
rounding the fiber as the fiber is pulled from the matrix, or the
resulting rapid decrease in pullout force at end slips between
70% and 80% of the fiber’s initial embedded length.

The primary objective of this research is to investigate the
mechanisms active during the pullout of a single twisted fiber from
a cementitious composite. To achieve this objective, this research
introduces a numerical model at the single fiber length scale
accounting for fiber morphology as well as three phases of mate-
rial: fiber, an interfacial transition zone (ITZ) between the fiber
and the surrounding matrix, and the matrix. The dissipation mech-
anisms considered include plastic deformation of the fiber, friction
at the fiber–ITZ interface, and plastic deformation due to granular
flow, i.e., plastic deformation of granular materials, of the ITZ and
matrix. The numeric model provides insights into the active phys-
ical mechanisms not possible by physical experiments or analytical
models; thus, it is intended that this model will provide a means
for improving the design of twisted fibers in the future.

2. Framework of analysis and constitutive models

The numerical model considers finite deformation. A material
point initially at a fixed reference coordinate X

�
moves to a de-

formed coordinate x
�
. The mapping between x

�
and X

�
is specified

by the displacement vector. The deformation gradient is defined
by F

�
¼

@ x
�

@ X
�
. For elastic–plastic materials, the deformation gradient

is multiplicatively decomposed via F
�
¼ F
�

e � F
�

n where F
�

e and F
�

n are
the elastic and inelastic deformation gradients, respectively. The
deviatoric stress S

�
is defined by S

�
¼ r
�
þp I

�
, where r

�
; p, and I

�
are

the Cauchy stress tensor, the hydrostatic pressure, and the second
rank identity tensor, respectively. The pressure is given by
p ¼ � 1

3 r
�

: I
�
.

2.1. Constitutive relations – matrix

The matrix is represented by a pressure sensitive and strain-
rate insensitive extended Drucker–Prager constitutive relation in-
cluded as part of Abaqus/Explicit v6.10 [22]. The extended Druc-
ker–Prager constitutive relation assumes the yield condition

F ¼ t � p tanðbÞ � d 6 0; ð1Þ

where

t ¼ 1
2

q 1þ 1
K
� 1� 1

K

� �
r
q

� �3
" #

: ð2Þ

Here, b is the internal friction angle in the meridional stress
plane, and d is the cohesion of the material under pure shear. In
Eq. (2), q is the Mises equivalent stress defined by q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 ðS� : S

�
Þ

q
,

K is the ratio between the yield stress in triaxial tension and the
yield stress in triaxial compression and must be in the range
0:778 6 K 6 1:0, and r is the third invariant of the deviatoric stress
defined by r ¼ ð92 S

�
� S
�

: S
�
Þ

1
3. Setting K = 1 allows the original Druc-

ker–Prager [23] yield condition to be recovered due to the lack of
dependence on the third invariant of deviatoric stress. The von
Mises yield condition is recovered when K = 1 and b = 0.

When the yield condition is satisfied (i.e., F = 0), a non-associa-
tive material yields according to the flow rule

D
�

p ¼
_�ep

c
@G
@ r
�

; ð3Þ

where D
�

p is the plastic part of the rate of deformation tensor, _�ep is
the equivalent plastic strain rate defined by _�e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 D
�

p : D
�

p
q

, c is a
constant defined by c ¼ 1� 1

3 tanðwÞ, G is the flow potential

G ¼ t � p tanðwÞ; ð4Þ

and w is the dilation angle.
In this paper, we consider normal weight cementitious matrix

with a mass density, qm, of 2.4 g/cm3 and unconfined compressive
strengths, fm, of 44 and 84 MPa. The elastic stiffness of the cemen-
titious matrix, Em, is calculated using the empirical relation

Em ¼ 2:15� 104 fm

10

� �1=3

ð5Þ

where fc is specified in MPa. Eq. (5) is from CEP-FIP Model 1990 [24],
which is valid for normal weight concrete containing quartz
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aggregate and 28-day unconfined compressive strengths less than
80 MPa [25]. For fm = 44 MPa and 84 MPa, the calculated elastic
stiffness values are 35.2 and 43.7 GPa, respectively. Possible soften-
ing of the matrix during large deformations is not considered.

The ratio of the yield stress in triaxial tension to the yield stress
in triaxial compression and the internal friction angle are assumed
to be Km = 0.8 and bm = 28�, as determined by Park et al. [26]. The
dilation angle, wm, is used as a calibration coefficient to fit the
model to experimental data presented in Sujivorakul [21]. The
choice of possible dilation angles is guided by Vermeer and dr Borst
[27], who showed that the w < b in all cases and observed that the
dilation angles of concrete are between 0 and 20. From the calibra-
tion, the dilation angle of the cementitious matrix is set to a con-
stant value of 2�. Table 1 summarizes the material parameters
used for the two different cementitious matrices considered.

2.2. Constitutive relations – interfacial transition zone (ITZ)

The constitutive relations for the ITZ follow those of the cemen-
titious matrix described in Section 2.1 except that elastic stiffness
of the ITZ, Ei, and the dilation angle of the ITZ, wi, are reduced. The
choice of Ei is guided by Cohen et al. [28], who estimated Ei/Em as a
function of ITZ thickness using the logarithmic rule of mixtures. For
an assumed ITZ thickness of 50 lm, Cohen, Lee, and Goldman esti-
mated Ei/Em to be 0.75 for Portland Cement mortars and 0.88 for a
cementitious matrix where 10% of the Portland Cement has been
replaced with silica fume. Here, Ei/Em is assumed to be a constant
value of 0.8.

The dilation angle in the ITZ is used as a calibration constant
and assumed to have a more restrictive upper bound, namely
wi 6 wm. Calibration of the model indicates that wi = 1.

2.3. Constitutive relations – fiber

The fiber is assumed to be an elastic–plastic pressure- and rate-
independent material. Yielding of the fiber is assumed to follow the
Von Mises yield criterion in the form of

Fðr
�
;a
�
;roÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

S
�
�a
�

dev
� �

: S
�
�a
�

dev
� �r

� ro ¼ 0; ð6Þ

where S
�

is the previously defined deviatoric stress tensor, a
�

is the
backstress tensor, a

�
dev is the deviatoric part of the backstress tensor

defined as s
�

dev ¼ a
�
� 1

3 a
�

: I
�
, and ro is the yield stress. The yield sur-

face evolves through the evolution of the backstress tensor, i.e.,

_a
�
¼ C

ro
ðr
�
�a
�
Þ _~epl � ca

�
_~epl ð7Þ

where C and c are material parameters and _~epl is the equivalent

plastic strain rate defined as _~epl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_e
�

pl
: _e
�

pl
r

. Because the inelastic

flow is assumed to be associative, the evolution equation for plastic
strain is

_e
�

pl ¼ _k
@F
@ r
�

; ð8Þ

where _k is the plastic multiplier obtained from the consistency con-
dition dF = 0. Damage initiation and damage evolution are not
considered.

The fiber’s density, qf, elastic stiffness, Ef, and Poisson’s ratio, mf,
are assumed to be 7.85 g/cm3, 190 GPa, and 0.33. The remaining
Table 1
Material parameters used for cementitious matrix.

fm (MPa) qm (g/cm3) Em (GPa) Km () bm (�) wm (�)
44 2.4 35.2 0.8 28 2
material parameters were determined from monotonic uniaxial
tensile data of a non-twisted triangular fiber reported in Sujivora-
kul [21]. The triangular fiber was manufactured by shaping music
wire, initially with a round cross section and confirming to ASTM
A228 [29]. The triangular shape was approximately the shape of
an isosceles triangle with an equivalent diameter, /e, of 0.5 mm.
Here, the equivalent diameter is defined as /e ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
Af =p

p
, where

Af is the cross-sectional area of the triangular fiber.
Fig. 1 compares the engineering stress as a function of engineer-

ing strain for experimental data and numerical simulations of a
uniaxial monotonically loaded triangular shaped fiber which was
not twisted prior to testing. In Fig. 1, the solid black line represents
the experimentally observed behavior presented by Sujivorakul
[21]; the dashed red line represents the engineering stress-engi-
neering strain behavior of numerical simulations. The calibration
constants were determined to be ro = 1.15 GPa, C = 260 GPa, and
c = 195 via simulation of a 25.4-mm long non-twisted fiber with
a triangular cross section.

2.4. Constitutive relations – interfacial friction

The friction model used is the rate-independent, isotropic Cou-
lomb friction law. In this model, relative motion between two sur-
faces is allowed when the equivalent shear stress

seq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2

q
ð9Þ

reaches or exceeds the critical stress

scrit ¼ lpcontact; ð10Þ

where s1 and s2 are mutually orthogonal shear stresses at the inter-
face, l is the coefficient of friction, and pcontact is the normal contact
pressure between the two surfaces. Because the model is assumed
to be isotropic, the magnitudes of the shearing rates

_c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_c2

1 þ _c2
2

q
s1
seq

and

_c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_c2

1 þ _c2
2

q
s2
seq

ð11Þ

are proportional to the shear stresses s1 and s2.
The coefficient of Coulomb friction is determined from the

experiments of Baltay and Gjelsvik [30], who found that the coef-
ficient of friction between steel and concrete depends on the sur-
face finish of the steel. For machined steel surfaces, the mean
coefficient of friction was measured over the range of normal pres-
sures from 13.8 kPa to 55 MPa. Although Baltay and Gjelsvik [30]
assigned a mean value of 0.47, the data for machined steel surfaces
indicate a parabolic response with the maximum value of l = 0.58
Fig. 1. Comparison of experimental (solid black) and simulation (dashed red)
stress–strain data for monotonically loaded tensile specimens. The fibers have cross
sections in the shape of an isosceles triangle with ue = 0.5 mm. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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for a normal stress of 3.4 MPa and a minimum value of l = 0.35 for
pcontact 6 3.4 MPa and pcontact P 55 MPa. For steel surfaces with mill
scale, Baltay and Gjelsvik [30] reported that the coefficient of fric-
tion is 0.2 for pcontact = 10 kPa and increases to 0.53 for pcon-

tact = 34.5 MPa. In this work, a pressure-independent coefficient is
assumed to be 0.45 at steel-ITZ interfaces.

For cementitious materials in contact with other cementitious
materials, the American Concrete Institute ACI 381 [31] recom-
mends higher pressure-independent coefficients of friction,
namely 1.0 for normal-weight concrete placed against another
hardened concrete with an intentionally roughened surface, and
1.4 for cementitious surfaces formed within a monolithically
placed structure. In this work, a pressure-independent coefficient
is assumed to be 1.05 at interfaces formed as a result of fracture
within cementitious materials.
3. Model description

The model at the single fiber length scale is implemented in
three dimensions with a single fiber embedded in a 50-lm-thick
ITZ, which is then embedded within a cementitious matrix. Fig. 2
shows a sample instantiation of the reference configuration of
the model with the matrix shaded gray, ITZ shaded red, and fiber
shaded green. In Fig. 2, the triangular fiber has an ue = 0.5 mm, a
12.7-mm pitch, and a total length of 15.5 mm, of which 12.5 mm
has been embedded into the matrix. The remaining 3 mm is classi-
fied as the free length, Lfree, of the fiber. The numbers 1–6 in yellow
rectangles define faces of the model for future reference. Relative
displacements between the nodes on the external surface of the fi-
ber and the nodes on the internal surface of the ITZ are permitted;
however, relative displacements between the nodes on the exter-
nal surface of the ITZ and the nodes on the internal surface of
the matrix are not permitted.

The geometric scale of the model resolves fiber cross-sectional
shape, fiber length, and helical pitch along the fiber’s axis. All fibers
have cross sections in the shape of isosceles triangles with
ue = 0.5 mm. The model assumes perfect geometrical contact at
the fiber–ITZ and ITZ–matrix interfaces (i.e., no voids) and pres-
sure-independent dilation angles in the matrix and the ITZ. Fiber
warping and residual stresses caused by twisting of non-circular
prismatic fibers [32], as well as chemical adhesion between the fi-
ber and the ITZ are disregarded.
Fig. 2. Illustration of the model’s internal view showing the matrix (gray), ITZ (red),
and fiber (green). The fiber shown in the fiber detail view has a ue = 0.5 mm
triangular cross-section, 12.7-mm pitch, and a 15.5-mm total length, of which
12.5 mm is embedded into the cementitious material. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
3.1. Boundary and loading conditions

The boundary conditions are applied in two steps. In the first
step, face 1 of the fiber is fixed in the x3 direction while the matrix
and ITZ domains undergo an isotropic volume shrinkage in accor-
dance with recommendations of CEB-FIB Model Code 1990 [24].
For a normal hardening cement with a fc = 44 MPa, CEB-FIB recom-
mends a linear shrinkage of �280 lm/m after 2 days of curing. The
linear shrinkage is applied via a smooth step function prebuilt in
Abaqus such that the linear shrinkage is 0 lm/m at 0 ms,
�280 lm/m at 0.008 ms, and the partial derivative of shrinkage
with respect to time is zero at 0 and 0.008 ms. Rigid body transla-
tion is prevented by fixing the center point of the fiber’s positive x3

face in the x1 and x2 directions.
In the second step, the fiber is pulled from the ITZ and matrix.

Matrix faces 1–5 are traction-free; face 6 of the matrix is fixed in
the x1, x2, and x3 directions. Face 1 of the fiber is pulled in the x3

direction at a velocity that linearly increases via a smooth step
function from 0 m/s at 0 ms to 10 m/s at 0.125 ms and remains
constant thereafter. As it is being pulled from the ITZ and matrix,
the fiber is prevented from rotating about the x3 axis.
3.2. Meshing and numerical algorithm

Meshes were generated using Abaqus’s native meshing algo-
rithm [22]. Fig. 3 shows a sample meshed model for an ue = 0.5 -
mm triangular cross-section and 12.7-mm pitch fiber. The matrix
was meshed by 4-node tetrahedral elements using an unstruc-
tured, graduated mesh with a characteristic element length of
380 lm at matrix faces 2–6 decreasing to a characteristic element
length of 28 lm at the matrix–ITZ interface. Here, characteristic
element length of a tetrahedral element is defined as the volume
of a tetrahedral element divided by the maximum surface area of
the four faces of the same tetrahedral element. The ITZ was
meshed by 4-node linear tetrahedral elements, with a characteris-
tic element length of 16 lm. The fiber was meshed by 8-node lin-
ear reduced integration hexahedral elements with a 110 lm seed,
resulting in elements with side lengths between 94 and 111 lm.
The meshing resulted in approximately 90,000 matrix elements,
14,000 ITZ elements, and 4000 fiber elements. It is noted that this
numerical model is mesh sensitive. Specifically, the mesh density
inherently alters the surface roughness at the fiber–ITZ interface,
causing different levels of normal and surface tractions during slip.
The different levels of tractions then cause varying amounts of
plasticity in the matrix and the ITZ. To account for mesh-sensitiv-
ity, the model is calibrated in Section 4.

Numerical results were calculated by Abaqus/Explicit v6.10–1
running on 40 AMD 2350QC processing cores. For instantiations
with Le = 12.5 mm, the processing time varied from 48 to 300 h
depending on the severity of contact and distortion of the ITZ
and matrix elements.
4. Model calibration and validation

The model was calibrated to experimental data reported by Su-
jivorakul [21], who pulled twisted fibers with triangular cross sec-
tions from cement mortar with fc = 44 MPa. The fibers had been
embedded 12.7-mm into the cement mortar. The two data sets
chosen from Sujivorakul [21] for calibration and validation had
pitches of 12.7 and 38.1 mm, respectively.

In physical experiments, the free length of each fiber was min-
imized, leading to an unknown, yet positive distance between the
face of the cementitious material and the point that the fiber was
pulled from. This positive value of free length was not necessarily
constant for the three fibers considered for calibration. In contrast,



Fig. 3. Illustration of the meshed model showing the matrix (gray), ITZ (red), and fiber (green). The shown fiber has a ue = 0.5 mm triangular cross-section, 12.7-mm pitch, a
15.5-mm total length, and a 3.0-mm free length. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the numerical simulations assume a fixed free length of 3.0 mm
unless specified otherwise.

The model was calibrated by adjusting the dilation angles of the
matrix and the ITZ such that the pullout force as a function of end
slip of the numerical simulation matched that of the aforemen-
tioned physical experiments. Here, pullout force is defined as the
total traction in the positive x3 direction on the x3 face of the fiber
(cf. Fig. 2); end slip is defined as the displacement in the x3 direc-
tion of the x3 face of the fiber with the reference position taken
from the reference configuration. Starting with the 12.7-mm pitch
fiber, dilation angles of 2� and 1� were chosen for the matrix and
the ITZ. Subsequently, the model was validated by simulating a fi-
ber–ITZ–matrix system with the same material parameters and a
38.1-mm fiber pitch. Results of the simulations generated in this
work and experimental data generated by Sujivorakul [21] are
compared in Fig. 4. In Fig. 4, numerical data is shown as thin
dashed lines shaded red for the 12.7-mm pitch and blue for the
38.1-mm pitch. Data generated by physical experiments are shown
as thick solid lines and are shaded the same color as their corre-
sponding experimental data with the same pitch. For comparison,
a third pair of curves, shaded black, indicate data for straight,
smooth fibers with 0.5-mm-diameter circular cross sections. The
dashed black line was generated using a numerical simulation sim-
ilar to the model shown in Fig. 2, except that the fiber was straight
and smooth with a 0.5-mm-diameter cross section. The mesh at
the fiber–ITZ interface of the circular fiber had a characteristic ele-
ment length of 55 lm, which is smaller than the characteristic ele-
ment length used for the twisted triangular fibers. It is assumed
that the need for the finer mesh is attributable to discretization er-
rors introduced in three-dimensional meshing. The thick solid
black line was experimentally measured in Sujivorakul [21].

Experimental and numerical results can also be compared by
the maximum pullout force and the total work of pullout, defined
as the integral of pullout force integrated over the end slip for end
slips between zero and Le. Fig. 5a and b compare the maximum
Fig. 4. Calibration and validation curves for triangular fibers with initial pitches of
12.7 (red), and 38.1 (blue) mm. The black lines represent data for straight, smooth
fibers with circular cross sections. Experimental data of Sujivorakul [21] are shown
as thick solid lines, and data from numerical simulations are shown as thin dashed
lines. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
pullout force and work during pullout for experimental data of Su-
jivorakul [21] and the numerical simulations utilizing the model at
the single fiber length scale. In Fig. 5, data points representing
experiments are shown as squares shaded red; data points repre-
senting numerical simulations are shown as circles shaded green.
The two dashed lines at the bottom of each figure have a constant
value, representing the value for a straight, smooth fiber. For the
twisted fibers considered, the numerical simulation under-predicts
the maximum pullout for by a maximum of 13%, and over-predicts
the total work by 16%.
4.1. Validation of elastic–plastic responses of the matrix and ITZ

Although the mechanisms in the numerical simulations cause
slip-hardening and matrix tunneling, it is not assumed that the
numerical model presented here provides a unique solution pre-
dicting these phenomena. In lieu of an exhaustive analysis, Fig. 6
compares the pullout forces as a function of end slip computed
by the model utilizing different constitutive relations for the ma-
trix and ITZ. The solid red curve indicates the pullout response of
the elastic–plastic matrix and ITZ constitutive relations as de-
scribed in Sections 2.1 and 2.2. In comparison, the dashed black
line shows the pullout response of the model assuming a purely
elastic response for the matrix and ITZ. At end slips less than
2 mm, the pullout responses are indistinguishable. However, for
end slips between 2 and 12.5 mm, the pullout force of the model
using purely elastic constitutive relations for the matrix and ITZ
displays slip-softening. Additionally, the elastic curve does not dis-
play any tunneling effects as described previously.
4.2. Untwisting of fiber during pullout

Beyond reproducing the experimental pullout curves, maxi-
mum pullout force, and total work, the model reproduces the
experimentally observed untwisting of fibers during pullout (cf.
Kim et al. [3]). Here, untwisting is defined as the increase of a fi-
ber’s pitch from the initial pitch to a finite pitch greater than the
initial pitch. To illustrate this phenomenon, Fig. 7 shows the defor-
mation and evolution of plastic strain of the outside of a 12.7-mm
initial pitch fiber at end slip increments of 2.5 mm. For clarity, the
ITZ and fc = 44 MPa matrix surrounding the fiber are not shown;
however, the positive x3 face of the cementitious matrix is marked
with a light gray vertical line. At each increment of end slip, the
portion of the fiber within the cementitious material is to the left
of the light gray line, and is marked as the ‘‘Embedded portion of
fiber’’. In Fig. 7, the image of the fiber at the top left of the figure
represents the fiber’s state of deformation and equivalent plastic
strain after the matrix and ITZ have shrunk, but before the fiber
has been pulled from the matrix. The image of the fiber at the bot-
tom right represents the fiber at an end slip of 12.5 mm. At an end
slip of 12.5 mm, the fiber has been removed from the matrix, but
has not come to rest and may subsequently relax.



Fig. 5. (a) Maximum pullout force and (b) total work during pullout as functions of fiber pitch comparing data from experiments [21] (shaded red) and numerical simulations
(shaded green) for Le = 12.5 mm and fc = 44 MPa. The two dashed horizontal lines at the bottom represent the value for a straight smooth fiber. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Pullout force as a function of end slip for utilizing an elastic–plastic elastic
ITZ–matrix (dashed black) and a elastic–plastic (solid red) ITZ–matrix system. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Similar to physical experiments, numerical simulations indicate
that the fiber untwists due to mechanical pullout from the matrix.
From Fig. 7, it is observed that equivalent plastic strain primarily
accumulates in longitudinal bands positioned at the center of each
of the three flats. The longitudinal bands extend from the exit of
the matrix to the free tip of the fiber. From this observation, it is
determined that the fiber exhibits primarily an elastic behavior
within the ITZ and matrix. On the triangular fiber shown, there
are three such longitudinal bands with maximum equivalent plas-
tic strain values of 0.05.

5. Results

The results from the numerical model focus on using the
numerical model to gain insights into the active mechanism of
Fig. 7. Evolution of deformation and equivalent plastic strain as a function of end slip fo
physical experiments, investigate the behavior of an in situ fiber
at a crack opening distance of zero mm, and extend the model to
higher unconfined compressive strength mortars containing silica
fume.
5.1. Active mechanisms in the numerical model

In this section, mechanisms of the numerical model are investi-
gated to gain insight into possible mechanisms in the physical
experiments. In particular, the mechanisms of interest are the
transfer of tractions from the fiber to the ITZ and matrix, causes
of the slip-hardening response and tunneling response, the inter-
play of the different dissipation mechanisms, and extend the mod-
el to higher unconfined compresive strength mortars containing
silica fume.
5.1.1. Transfer of tractions from the fiber to the ITZ and matrix
The transfer of tractions from the fiber to the ITZ and matrix can

be observed in the evolution of r33, as seen in Fig. 8 for a 12.7-mm
pitch fiber. For reference, Fig. 8 shows results of the same set of
material properties and initial fiber geometries as the results
shown in Fig. 7. Similar to Fig. 7, the ITZ and matrix surrounding
the fiber have been removed for clarity and replaced with the far-
thest right vertical gray line marking the positive x3 face of the
matrix.

For end slips between 5.0 and 10.0 mm inclusive, there is of gra-
dient of r33 starting approximately 3 mm into the matrix and end-
ing at the positive x3 face of the matrix. In Fig. 8, the location of the
gradient is identified as the ‘‘Stress Transition Zone (STZ)’’. The
function of the STZ is to transfer tractions from the twisted fiber
to the matrix. For example, consider the distribution of r33 along
r a triangular fiber with an initial 12.7-mm pitch pulled from a fc = 44 MPa matrix.



Fig. 8. Evolution of r33 as a function of end slip for a triangular fiber with an initial 12.7-mm pitch pulled from a fc = 44 MPa matrix.
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the x3 axis shown in Fig. 8 at an end slip of 5.0 mm. At the left edge,
or the beginning, of the STZ, r33 = 200 MPa; whereas r33 = 500 MPa
at the right edge, or conclusion, of the STZ. The significance of the
STZ is that a small domain of material is controlling the global re-
sponse of the fiber. Although similar in name, the STZ is fundamen-
tally different than the ITZ: STZ is an inhomogeneous region
composed of fiber, ITZ, and bulk matrix with a location that can
only be determined only after a crack plane in the matrix has been
established. The ITZ is a result of processing conditions and exists
regardless of a crack plane in the cementitious materials.
5.1.2. Slip-hardening and tunneling responses
The slip-hardening and tunneling responses observed in Fig. 4

are direct consequences of the STZ. For example, Fig. 9 shows evo-
lution of equivalent plastic strain as a function of end slip in a 12.7-
mm-pitch fiber–ITZ–matrix system at a x1 = 0 mm section view.
The section view shows only a 13.5 � 5 mm2 section of the matrix;
the remainder of the matrix at this cross section had equivalent
plastic strains less than 0.01.

The equivalent plastic strains within the STZ in Fig. 9 cause the
numerical model to predict slip-hardening and tunneling via the
following sequence of events. First, the ITZ plastically deforms
Fig. 9. Evolution of equivalent plastic strain as a function of end slip for a triangular
fiber with an initial 12.7-mm pitch pulled from a fc = 44 MPa matrix.
via granular flow causing the matrix to dilate. The dilation of the
ITZ leads to plastic deformation and dilation of the matrix within
an approximate 1.25 mm radius of the fiber. This local dilation of
the matrix is confined by the regions of the matrix further from
the fiber, ultimately causing the normal tractions at the fiber–ITZ
interface to increase. The increase in the fiber–ITZ normal tractions
increase frictional resistance via the isotropic Coulomb relations,
which in combination with the plasticity of the ITZ and matrix,
cause the observed slip-hardening.

The tunneling response is also a consequence of granular flow of
the ITZ and matrix. For example, the granular flow and dilation of
the ITZ and matrix elements leads to the erosion, or displacement
from the fiber bed of a small number of elements, as visible in Fig. 9
for end slip values greater than or equal to 5.0 mm. After a suffi-
cient number of ITZ and matrix elements erode, the fiber bed sur-
rounding the matrix no long remains in contact with the fiber, thus
causing tunneling.
5.1.3. Interplay of the different dissipation mechanisms
Unlike physical experiments, numerical models allow the total

work to be partitioned into different mechanisms. Fig. 10 partitions
the total work into friction, plastic dissipation in the fiber–ITZ–ma-
trix system, and strain energy for systems containing 12.7- and
38.1-mm pitch fibers. A further partitioning of the plastic dissipa-
tion portion of the energy is shown in Fig. 11, which partitions
plastic dissipation in the plastic dissipation due to the granular
flow of the ITZ, plastic dissipation due to plastic deformation of
the fiber, and plastic dissipation due to the granular flow of the ma-
trix material.

The energy partitions shown in Figs. 10 and 11 indicate that the
model is highly dissipative, with less than 1% of the total work
stored as strain energy. Of the remaining 99% of the total work,
friction is the dominant energy dissipation mechanism during
the first 80% of end slip. This observation is significant in that both
the numerical model presented here and the analytical model pre-
sented by Sujivorakul [21] primarily account for pullout forces
through frictional effects. The primary difference between the
models is that the numerical model accounts for increased pullout
resistance by including plasticity of the ITZ and matrix materials,
instead of adding a torque component to the embedded end of
the fiber.

Interestingly, plastic dissipation of the 12.7- and 38.1-mm fi-
bers accounts for only 8% and 2% of the total work within each
respective system. To explore this observation further, a numerical
model was constructed of a 12.5-mm long, straight, triangular
shaped fiber utilizing the same constitutive relation given in Sec-
tion 2.2. The straight fiber was then twisted about its primary axis,



Fig. 10. Partition of total work as a function of end slip for fibers with (a) 12.7-mm and (b) 38.1-mm pitches. Each fiber was embedded 12.5 mm into an ITZ–matrix system
with fc = 44 MPa.

Fig. 11. Partition of total plastic dissipation as a function of end slip for (a) 12.7-mm and (b) 38.1-mm pitched fibers. Each fiber was embedded 12.5 mm into an ITZ–matrix
system with fc = 44 MPa.
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i.e., the x3 axis as shown in the Fiber Detail view of Fig. 2, in order
to form twisted fibers with 12.7- and 38.1-mm pitches. The posi-
tive x3 face of the fiber was fixed; the negative x3 face was rotated
either 8.2 or 4.9 radians, depending on whether the final pitch was
12.7 or 38.1 mm, during a smooth step function with a duration of
1 ms. During rotation, the negative x3 face of the fiber was permit-
ted to translate in the x3 direction. The fiber was then allowed to
relax for 1 ms before being untwisted the same number of radians
as the fiber was previously twisted. Note that the angle of applied
twist, i.e. 8.2 or 4.9 radians, was greater than the final desired
twists of 2p or 2/3p for the 12.7- and 38.1-mm pitched fibers
due to elastic recovery.

The applied torque and work required to twist the straight fi-
bers to pitches of 12.7 and 38.1 mm are shown in Fig. 12. In
Fig. 12 torque data are shown as thin dashed lines; data for the
work, defined as the integral of the torque over the angle of twist,
are shown as solid lines. The numerically calculated torque values
Fig. 12. Applied torque and work required to twist fibers to 12.7- and 38.1-mm
pitches. Fibers have ultimate tensile strengths of 2412 MPa and lengths of 12.5 mm.
are slightly greater than the theoretical fully plastic torque value of
35 N-mm, which is calculated by

T0 ¼
2
3

ryieldffiffiffi
3
p b

2

� �3

ð12Þ

as determined by Chakrabarty [32]. In the preceding equation, ryield

is the yield strength of the fiber, i.e. 2,412 MPa, and b is the width of
the fiber, i.e. 0.67 mm for the ue = 0.5 triangular shaped fiber shown
in Fig. 2.

The ratio of total work required to pull a twisted fiber from a
cementitious material shown in Fig. 10 to the plastic work to twist
a fiber in Fig. 11 indicates that twisting polygonal fibers have a po-
sitive energy return on the work required to twist the fibers. For
example, the 12.7-mm pitch fiber requires 1.72 J to be pulled from
the matrix and 0.25 J to be twisted. Thus, this combination of
cementitious material and fiber returns 7 times the energy for
the energy required to twist the fiber.
5.2. Behavior of an in situ fiber at a crack face

Physical experiments are limited by the lack of control of all
parameters. For example, the free length of the fiber can be mini-
mized in experiments, but never eliminated. This specific limita-
tion prevents researchers from experimentally determining the
in situ behavior of twisted fibers at a crack face, where the fiber
experiences a free length of 0 mm. In this section, the validated
numerical model is utilized to gain insights into the pullout re-
sponse at a crack face by simulating twisted fibers with zero free
lengths.

Figs. 13a and b show the pullout responses of 12.7- and 38.1-
mm pitch fibers comparing the pullout force versus end slip data



Fig. 13. The effect of free length of fiber quantified by the pullout force as a function of end slip for initial fiber pitches of (a) 12.7 mm and (b) 38.1 mm. Experimental data of
Sujivorakul [21] shown as solid lines; numerical simulation data with Lfree = 3.0 mm shaded the same color as the experimental data with dashed lines; numerical simulation
data with Lfree = 0.0 mm is shaded as black dashed lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 15. Pullout force as a function of end slip for fc = 84 MPa. Experimental data
shown as solid line and numerical data shown as dashed lines.
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from experiments (solid line) to those generated by numerical sim-
ulations having 3.0- and 0.0-mm free lengths.

The numerical simulations indicate that the effect of free length
is more pronounced for the fiber’s having larger initial pitches. In
particular, the fiber with an initial pitch of 38.1 mm and Lfree = 3.0 -
mm exhibits a maximum pullout force of 90 N; whereas the same
fiber–ITZ–matrix system had a maximum pullout force of 165 N.
This 83% increase in pullout force is not observed in the fiber–
ITZ–matrix system with 12.7-mm pitch, which shows a more mod-
est 17% increase in maximum pullout force. The primary signifi-
cance of this finding is that experimental single fiber pullout
tests provide a lower bound to the pullout forces experienced
in situ at a crack face.
5.3. Extended model for higher unconfined compressive strength
mortar containing silica fume

For higher matrix strengths, experimental data indicates that
the pullout response changes from a slip-hardening response to
either a slip-neutral or slip-softening response for end slips be-
tween 10% and 80% of the fiber’s embedded length. Therefore, it
is expected that the previously identified STZ does not sufficiently
dilate to increase the cause slip-hardening responses. Instead, the
higher strength ITZs and matrices experience yielding and dilation
such that either the slip-neutral or slip-softening behavior is pres-
ent. For example, consider the experimental responses reported by
Sujivorakul [21] shown in Fig. 14 for a 12.7-mm initial pitch fiber
embedded 12.7 mm deep into two different matrices: fc = 44 MPa
and fc = 84 MPa.

Recalling Fig. 6, the numerical model predicts slip-hardening
behavior if the ITZ and matrix are assumed to have purely elastic
responses. This observation motivates the modeling of fiber–ITZ–
Fig. 14. Experimentally measured pullout force versus end slip displacement for
fibers with an initial pitch of 12.7 mm (adapted from Sujivorakul [21]).
matrix systems with higher strength matrices, such as the fc = 84 -
MPa response in Fig. 14. However, changing the matrix and ITZ to
elastic constitutive relations with Em = 43.7 GPa, mm = 0.2, Ei = 35.0 -
GPa, and mi = 0.2, and the linear shrinkage to �140 lm/m, per the
CEB-FIB model code shrinkage estimates, under-predicts the pull-
out force at all end slips. A possible explanation for the under-pre-
diction is found in the results of Chan and Chu [10], who showed
cementitious material attached to straight, smooth circular fibers
after being pulled from a cementitious material containing 30% sil-
ica fume by weight. The silica fume enhanced the chemical bond to
the fiber, thus causing a fracture surface within the monolithically
poured cementitious material. Therefore, the assumed 0.45 coeffi-
cient of friction at a steel–concrete interface is no longer valid; in-
stead, it is assumed that the coefficient of friction increases to 1.05,
which is between 1.0 for concrete placed against intentionally
roughened concrete surfaces and 1.40 for concrete placed mono-
lithically, as recommended by the American Concrete Institute’s
(ACI) Building Code Requirements ACI 318 [31].

From this assumed coefficient of friction, a simplified version of
the model with elastic ITZ and matrix constitutive relations is uti-
lized to estimate the pullout response of fibers from the matrix.
The other significant change is the change to the Young’s modulus
brought by changes in the measured compressive strength. Fig. 15
shows the calculated pullout response from simulations as dashed
lines and the measured experimental data of Sujivorakul [21] as
solid lines.

A comparison of the simulated and experimental data indicate
that the simulation data is in the same rank order as the experi-
mental data. Furthermore, the maximum pullout force for each ini-
tial fiber pitch is within 10% of the maximum pullout force
measured experimentally.
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6. Conclusions

A 3D finite element model at the scale of a single fiber was
developed to understand the active mechanisms of storage and
dissipation present during the quasi-static pullout of twisted fibers
from cementitious materials. The model captures physical phe-
nomena relevant to the pullout of fibers from the concrete matrix
(i.e., granular flow of the interfacial transition zone (ITZ), granular
flow of the matrix, the plastic deformation of the fiber, and the fric-
tion at the interface between the fiber and the ITZ). In particular,
the approach taken allows the resistance of fibers against pullout
to be quantified as a function of fiber morphology, size, and prop-
erties of the fiber and matrix materials in the concrete. The model
was calibrated and validated utilizing previously published exper-
imental data for fibers having a 2400 MPa ultimate tensile
strength, triangular cross sections with equivalent diameters of
0.5 mm, and pitches between 12.7 and 38.1 mm, and cementitious
materials having a 44-MPa unconfined compressive strength.

Numerical simulations using the model were conducted and
produced the following important findings.

� Fiber morphology can significantly influence the resistance of
fibers against pullout from the cementitious material. Specifi-
cally, the twisting of fibers around their own axes can increase
the maximum pullout force by 5 times and the total work dur-
ing pullout by over 10 times. The mechanisms responsible for
this improvement are enhanced interactions between the fiber
and the ITZ caused by granular flow and dilation of the ITZ
and matrix. The interactions manifest as a domain identified
as the stress transition zone (STZ).
� The free length, defined as the portion of the fiber between the

cementitious material and the position at which the fiber is
pulled from, influences the pullout response of twisted fibers
measured in physical experiments. Specifically, numerical sim-
ulations indicate that shorter free lengths, such as the free
lengths found at crack surfaces in situ, cause twisted fibers to
have higher pullout forces than similar fibers with longer free
lengths. The level of influence varied by the fiber pitch, decreas-
ing with decreasing fiber pitch. This finding is significant
because it indicates that experimental pullout data may be
viewed as conservative compared to in situ performance.
� The pullout response of twisted fibers from cementitious mate-

rials with greater unconfined compressive strengths (e.g.,
fc = 84 MPa), cannot be accounted for using the same coefficient
of friction values used for lower strength cementitious materi-
als. However, numerical simulations indicate that a 1.05 coeffi-
cient of friction, which is within the 1.0 –1.4 range
recommended by the American Concrete Institute for concrete
to concrete surfaces, provides similar pullout responses as those
found experimentally.
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