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a b s t r a c t

The effect of the a-quartz-to-coesite silica phase transformation on the load-carrying and energy-dissi-
pation capacities of ultra-high-performance concrete (UHPC) under dynamic loading with hydrostatic
pressures of up to 10 GPa is evaluated. The model resolves essential deformation and failure mechanisms
and provides a phenomenological account of the transformation. Four modes of energy dissipated are
tracked, including inelastic deformation, distributed cracking, interfacial friction, and the energy dissi-
pated through transformation of the quartz aggregate. Simulations are carried out over a range of volume
fractions of the constituent phases. Results show that the phase transformation has a significant effect on
the energy-dissipation capacity of UHPC for the conditions studied. Although transformation accounts for
less than 2% of the total energy dissipation, the transformation leads to a twofold increase in the crack
density and yields almost an 18% increase in the overall energy dissipation. Structure-response relations
that can be used for materials design are established.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Ultra high-performance concrete (UHPC) is often used in struc-
tures that are intended to provide protection against a variety of
threat scenarios, including blast and impact (Cavil et al., 2006).
These intense loading regimes lead to elevated temperatures and
pressures. Under such conditions, the material constituents can
change phase, which can drastically alter the dynamic response
of the material. Understanding the mechanical behavior alone,
however, is not enough to characterize a material in these loading
regimes. Dynamic loading of UHPC is inherently a coupled multi-
physics process involving mechanical, thermal, and phase transfor-
mation behavior.

The mechanical aspects, including fracture, friction, and bulk
granular flow, lead to internal temperature rises within a UHPC
structure and hydrostatic pressures on the order of multiple GPa.
These internal temperature rises and large pressures within UHPC
can induce phase transformations in the constituents (Wang et al.,
2010). One such transformation is the solid-state transformation of
quartz from the a-quartz phase to the coesite phase. It should be
noted that this transformation has not been fully quantified
experimentally and further investigation is still needed. Increased
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temperature can also lead to thermal softening of the constituents.
Phase transformations can lead to stiffness and density changes, as
well as additional fracture that can lead to further dissipation and
temperature increases, which in turn alter the mechanical
behavior. This interaction between mechanical, thermal, and phase
transformational processes during dynamic loading of UHPC ulti-
mately determines its load-carrying and energy-dissipation capac-
ities. Properly accounting for the coupling between these processes
in the regime of dynamic loading environments can provide for a
more complete assessment of the load-carrying and energy-dissi-
pation capacities. Because UHPC is a complex heterogeneous mate-
rial, which, like ordinary forms of concrete, contains large amounts
of quartz sand (Rong et al., 2010), it is of interest to account for
these behaviors to better understand and take advantage of such
mechanisms. For example, to most effectively tailor the
energy-dissipation capacity of UHPC structures and enhance their
survivability under extreme loading environments (e.g., blast and
impact), the fundamental processes that give rise to energy dissi-
pation must be understood.

Numerical simulations at the microstructural scale offer an
attractive means of accounting for the many coupled processes
that occur during a loading process because of the complexity in-
volved with tracking of all the mechanisms simultaneously. There
have been simulations that do account for temperature- and
pressure-dependent properties in concrete, but the focus of such
work has been on either thermal and mass transport properties
(Flynn, 1998), or on the static mechanical behavior (Morsy et al.,
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Fig. 1. Cohesive finite element model for UHPC microstructures with four constit-
uent phases of UHPC, imposed velocity, periodic boundary conditions, cohesive
elements, and infinite elements.
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2010; Omer, 2007; Naus, 2010; Handoo et al., 2002). More recent
work has attempted to bridge the gap between mass transport
properties and mechanical properties by simulating the damage
initiation in UHPC exposed to rapid heating (Lammi et al., 2011).
Numerical simulations of dynamic loading of UHPC at the micro-
structural scale have been performed that included an explicit ac-
count of the quartz aggregate, along with various other phases,
including porosity, steel fibers, and the cementitious matrix (Arag-
ao et al., 2010; Lammi et al., 2011; Ellis et al., 2012).

The authors are presently unaware of any work reported in the
literature that accounts for phase change within UHPC at the mes-
ostructural level with the ultimate goal of characterizing the
mechanical behavior of the material under high strain-rate dy-
namic loading. Analysis techniques capable of capturing the cou-
pled nature of the material response are needed to inform the
design of UHPC structures that must to be resilient to extreme
loading environments. Before UHPC structures can be tailored to
specific applications, the behavior of each constituent during ener-
getic blast and impact events, which induce very high strain-rate
deformation, must be well characterized.

In a companion work (Buck et al., 2012), a parametric study was
performed to assess the effects of microstructure phase volume
fractions on the dynamic mechanical behavior of UHPC without
thermal or phase transformational considerations. Results showed
that the volume fractions of the constituents have more influence
on the energy dissipation than the load-carrying capacity, inelastic
deformation is the source of over 70% of the energy dissipation,
and the presence of porosity changes the role of fibers in the dissi-
pation process. The goal of the present study is to address both
the mechanical and transformational aspects of the deformation
process. In particular, one aim of this paper is to quantify the effect
of the a-quartz-to-coesite phase transformation in UHPC subject to
energetic impact events. This will be accomplished by comparing
the load-carrying and energy-dissipation capacities in UHPC with
and without the inclusion of a phenomenological model capable
of phenomenologically capturing the effects of the aforementioned
phase transformation. As part of the analysis, the development and
validation of the phenomenological model are discussed. Finally,
updated microstructure performance-relation maps are developed
to account for the effect of phase transformation of quartz on the re-
sponse of the UHPC analyzed. The same micromechanical cohesive
finite element model (CFEM) used in the first part of this study
(Buck et al., 2012) is adopted to allow explicit resolution of the con-
stituents in the concrete microstructure, including the cementitious
matrix, aggregate, fibers, and voids. The model also allows explicit
account of crack formation and frictional interaction between crack
surfaces that come into contact under compression. The volume
fractions of phases of the microstructure are systematically varied
to delineate the effects of each material constituent. This approach
enables the contributions of different dissipation mechanisms (bulk
inelasticity, fracture/crack formation, and interfacial friction) to be
tracked and quantified. The simulations are carried out at strain
rates on the order of 105 s�1 and pressures between 1 and 10 GPa.
2. Cohesive finite element model

A cohesive finite element model framework is used in this paper
to conduct the numerical simulations. The framework is capable of
resolving four distinct constituent phases, including the cementi-
tious matrix, quartz aggregate, steel fibers, and voids. The frame-
work also allows for the definition of interface properties so that
fracture of interfaces and friction along crack faces can be consid-
ered. The 2D microstructures are 5 mm in width and 20 mm in
height, as shown in Fig. 1. The framework makes use of a 2D plane
strain assumption. The width or smaller dimension of this sample
is nearly 10 times the size of the largest constituent (the quartz
aggregate with a diameter of 600 lm) and is also large enough
such that even constituents present at the lowest volume fraction
(2.5%) appear approximately 15 times in the cementitious mate-
rial. This is important with respect to the random instantiation of
the microstructures. Too few appearances of the constituents could
bias the results if the random generation process concentrated
constituents in a particular region of the control area.

A velocity of 1000 m/s in the downward direction is imposed on
the upper surface of the microstructures. Rigid boundary condi-
tions on the sides of the microstructures allow the computations
to approximate the overall conditions of uniaxial strain with
significant confining stresses. A transmission boundary on the
lower surface is used to allow for transmission of the stress wave
without reflection. However, only data prior to the stress wave
reaching the lower surface (first 6.0 ls) are considered, so the exis-
tence of the lower boundary does not affect the discussions here. It
should be emphasized that the purpose of this study is to quantify
the load-carrying and energy-dissipation capacities of UHPC as
functions of the volume fractions of phases, rather than phase size
or size distribution. The effect of morphology of the constituents is
beyond the scope of the current work and is reserved for future
study. Additional details are provided in the first part of this work
(Buck et al., 2012).
3. Constitutive relations

3.1. Cementitious matrix

Cementitious materials are both pressure-sensitive and rate-
sensitive, so the constitutive relation used must be able to capture



Table 1
Parameters used in the Drucker–Prager constitutive
relation.

Density (g/cm3) 2.4

Elastic modulus (GPa) 22.9
Poisson’s ratio 0.2
Quasi-static compressive strength (MPa) 40
Friction angle b (degrees) 28
Dilation angle w (degrees) 20
K 0.8
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both aspects of the behavior. In this study, the Drucker–Prager
model is used for the cementitious matrix (Drucker and Prager,
1952).The Drucker–Prager relation assumes the yield condition

F ¼ t � p tanðbÞ � d 6 0; ð1Þ

where

t ¼ 1
2

q 1þ 1
K
� 1� 1

K

� �
r
q

� �3
" #

: ð2Þ

In the above equations, p is the hydrostatic pressure, b is the
internal friction angle in the meridional stress plane, d is the yield
stress of the material under pure shear, q is the von Mises equivalent

stress, given by q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2 S : S

q
, K is the ratio between the yield stress in

triaxial tension and the yield stress in triaxial compression, and r is

the third invariant of the deviatoric stress, given by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
2 S � S : S3

q
.

In the preceding expressions, S is the deviatoric stress tensor.
Parameter K allows for tension–compression asymmetry on any
arbitrary p-plane. To ensure a convex yield surface, the value of K
is restricted to the range 0:778 6 K 6 1:0. Setting K = 1 removes
the dependence on the third invariant of the deviatoric stress, and
Eq. (1) reduces to the classical Drucker–Prager yield criterion (Druc-
ker and Prager, 1952). Furthermore, when K = 1 and b = 0, Eq. (1) re-
duces to the von Mises yield criterion. The Drucker–Prager yield
criterion is shown schematically in Fig. 2. Fig. 2(a) shows the shear
stress as a function of hydrostatic pressure. The slope is governed by
the parameter b, and the vertical axis intercept is determined by the
yield stress under pure shear. Fig. 2(b) shows the yield function in
the p-plane for K = 0.8 (the value used in this study) as well as
K = 1 for comparison (Abaqus v6.10 Theory Manual, 2010).

Because cementitious paste exhibits dilatation and is a non-
associative material, the yield function F does not serve as the plas-
tic flow potential. Instead, a scalar flow potential G is chosen such
that

G ¼ t � p tanðwÞ; ð3Þ

where w is the dilation angle. After yielding, a material with non-
associated flow has the rate of plastic deformation tensor

Dpl ¼
_�epl

c
@G
@r

; ð4Þ

where _�epl is the equivalent plastic strain rate, defined by

_�epl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

Dpl : Dpl

r
ð5Þ

and

c ¼ 1� 1
3

tan w: ð6Þ

The values used for the parameters in the Drucker–Prager con-
stitutive relation are provided in Table 1 (Swamy and Mangat,
1974).
Fig. 2. Drucker–Prager yield criterion (a) in t–p plane, and
3.2. Quartz aggregate

At ambient conditions, quartz exists as a-quartz, which exhibits
a trigonal crystal structure (Swamy and Mangat, 1974). Above a
pressure of 2.35 GPa and at ambient temperature, quartz under-
goes a solid-state phase transformation to coesite, which exhibits
a monoclinic crystal structure. This transformation is accompanied
by an 8.82% decrease in volume (Zhou, 2005) and a 0.45% decrease
in internal energy (Boettger and Lyon, 1990). Coesite has an enthal-
py of formation of �907.25 kJ/mol (Bose and Ganguly, 1995). This
study will only consider the change in volume, and the process is
assumed to be isothermal. It should be noted that a-quartz also
undergoes a pressure- and temperature-dependent transformation
to b-quartz at temperatures above approximately 600 �C (Wang
et al., 2010). This phase transformation is accompanied by a vol-
ume increase, as well as the dehydration of the hydrated cementi-
tious products. At even higher temperatures, dehydroxylation of
the cementitious products occurs. Here, only the transformation
to coesite and the associated volume change are considered. This
focus allows the effects of this transformation on material behavior
to be analyzed. With sufficient input data, the approach can be ex-
tended to study the effects of other phase changes in the future.

Due to the limited symmetry of trigonal and monoclinic crys-
tals, the crystalline natures of a-quartz and coesite dictate that
they are anisotropic. However, for simplicity, quartz is modeled
as an isotropic material through the use of effective isotropic prop-
erties obtained using the Voigt–Reuss–Hill averaging technique
(Hill, 1952). This procedure is implemented over a range of pres-
sures so that the material properties used in the simulations reflect
relevant pressure-dependence, as shown in Fig. 3.

The first step is the collection of elastic constants for a-quartz
and coesite as a function of pressure. Trigonal crystal structures
have six independent elastic constants. Since the data available
in the literature (Calderon et al., 2007) only extend up to 1.0 GPa,
it is necessary to extrapolate the elastic constants of a-quartz up
to the transition pressure of 2.35 GPa using a linear curve fit. The
monoclinic structure of coesite possesses fewer symmetries and
requires 13 elastic constants (Kimizuka et al., 2008).

Next, four sets of values are chosen for the purposes of deriving
effective isotropic properties: (1) a-quartz constants at 0.0 GPa, (2)
(b) in the p-plane Abaqus v6.10 Theory Manual, 2010.
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a-quartz constants at 2.35 GPa, (3) coesite constants at 2.35 GPa,
and (4) coesite constants at 10.0 GPa. The Voigt–Reuss–Hill averag-
ing technique (Hill, 1952) is used at each pressure level to calculate
four sets of isotropic properties. Elastic constants pertaining to
pressures between points 1 and 2 and between points 3 and 4 in
Fig. 3 can be found through interpolation.

The first step of the Voigt–Reuss–Hill averaging technique is to
calculate the Voigt effective stiffness. The Voigt stiffness assumes
uniform strain and provides an upper bound to elastic moduli.
The Voigt effective bulk modulus KV is defined by

9KV ¼ ðc11 þ c22 þ c33Þ þ 2ðc12 þ c23 þ c31Þ; ð7Þ

where cij are the components of the elastic stiffness tensor. The Voi-
gt shear modulus GV is defined as

15GV ¼ ðc11 þ c22 þ c33Þ � ðc12 þ c23 þ c31Þ þ 3ðc44 þ c55 þ c66Þ; ð8Þ

where cij are the components of the elastic stiffness tensor.
Similarly, the Reuss effective stiffness assumes constant stress

and provides a lower bound to the elastic moduli. The Reuss effec-
tive bulk modulus KR is defined as

1=KR ¼ ðs11 þ s22 þ s33Þ þ 2ðs12 þ s23 þ s31Þ; ð9Þ

where sij are the components of the elastic compliance tensor. The
Reuss shear modulus GR is defined as

15=GR ¼ 4ðs11 þ s22 þ s33Þ � 4ðs12 þ s23 þ s31Þ þ 3ðs44 þ s55

þ s66Þ; ð10Þ

where sij are the components of the elastic compliance tensor.
Finally, the Voigt–Reuss–Hill effective bulk modulus is simply

the arithmetic mean of the Voigt stiffness and the Reuss stiffness,
i.e.,

KVRH ¼
KR þ KV

2
: ð11Þ

Similarly, the Voigt–Reuss–Hill effective shear modulus is given
by

GVRH ¼
GR þ GV

2
: ð12Þ

Since KR 6 K 6 KV and GR 6 G 6 GV, where K and G are the true
values of the stiffness and shear modulus, respectively, the
Voigt–Reuss–Hill average provides a satisfactory estimate of the
elastic properties if the quartz grains are assumed to be isotropic.
At the grain level, the quartz aggregate is, of course, anisotropic.
However, at the mesostructural level of UHPC, where the interest
is more in the collective response of the entire structure and not
the behavior of any individual grain, isotropy of the quartz aggre-
gate is a reasonable assumption.

The Voigt, Reuss, and Voigt–Reuss–Hill stiffness values are sum-
marized in Table 2. For clarity, the red line demarcates the bound-
ary between a-quartz and coesite. In the last two columns of
Table 2, the elastic modulus E and Poisson’s ratio m are calculated
using the Voigt–Reuss–Hill bulk modulus and shear modulus
according to standard elasticity relationships. The effective isotro-
pic elastic properties are shown in Fig. 3. As in Table 2, the division
between a-quartz and coesite is indicated by a red line. The values
in between the numbers calculated in Table 2 represent simple lin-
ear interpolation.

The transformation of a-quartz into coesite is accompanied by
a volume reduction of 8.82% (Zhou, 2005). The literature is not
clear as to whether this volume reduction is with respect to the
original, undeformed volume or with respect to the elastically de-
formed configuration just prior to transformation. For the pur-
poses of this study, it is assumed that the 8.82% volume
reduction is relative to the volume just prior to the transformation.
Since the volume change (and deformation overall) in the aggre-
gate prior to the phase transformation is on the order of 3% in
the calculations of this paper, this assumption does not have a sig-
nificant impact on the result. Specifically, if the original volume of
a material element is V0, assuming the transformation volume
change to be relative to the original volume and assuming it to
be relative to the deformed volume correspond to reckoning the
transformation relative to V0 and 0.97V0, respectively. To model
this contraction, a methodology based on finite deformation kine-
matics has been developed. Assuming a multiplicative decomposi-
tion of the deformation gradient, the deformation of a quartz
element can be shown schematically in Fig. 4. Here, R0 represents
the reference region, c0 represents the initial center of the quartz
element, and x represents the initial position. Fel is the deforma-
tion gradient associated the elastic deformation of the quartz. This
leads to an intermediate state where R is the intermediate refer-
ence region, c is the center of the quartz element in the intermedi-
ate state, and y is the position. Ftr represents the deformation due
to the phase transformation alone and leads to the final state
where R⁄ is the reference region, c⁄ is the center, and y⁄ is the posi-
tion. The final state can be reached through the combined defor-
mation gradient F = Ftr � Fel. No other forms of inelastic
deformation are considered. Natural quartz crystals do not display
appreciable plastic deformation except under the combination of
pressures and temperatures in excess of 1.5 GPa and 400 �C,
respectively (Blacic and Christie, 1984). Furthermore, these data
are for quasi-static strain rates. Although pressures in this study
are in this regime, temperatures are not; internal temperature in-
creases are not considered. Consequently, the failure mode of
quartz is likely to be brittle fracture under the high-rate loading
of this study.

The volumetric contraction can be described as proportional
and isotropic scaling of the coordinates about the center of an ele-
ment relative in the intermediate state in the form of
y� ¼ aðy � cÞ þ c: ð13Þ

In Eq. (13), a represents the amount of scaling in any direction
corresponding to the desired volume change. Note that a < 1 since
the volume decreases upon transformation.

The deformation gradient due to the transformation alone is
Ftr ¼ @y�

@y
¼

a 0 0
0 a 0
0 0 a

2
64

3
75 ¼ aI: ð14Þ



Table 2
Voigt–Reuss–Hill average stiffness values for a-quartz and coesite at key pressure values.

Pressure (GPa) KV (GPa) KR (GPa) KVRH (GPa) GV (GPa) GR (GPa) GVRH (GPa) E (GPa) v

0.0 (1 atm) 38.11 37.65 37.88 48.07 41.38 44.73 96.29 0.08
2.35 47.37 46.74 47.06 49.55 43.48 46.52 104.96 0.13
2.35 106.37 100.22 103.29 59.47 51.52 55.49 141.19 0.27
10.00 133.21 127.97 130.59 60.97 50.40 55.68 146.26 0.31

Fig. 4. Multiplicative decomposition of deformation gradient for accounting for the
volume change associated with quartz phase change.
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To determine a, note that

dV�

dV
¼ det Ftr ¼ a3 ¼ 0:9118: ð15Þ

Therefore, a = 0.9697.
The total deformation gradient is

F ¼ ðaIÞ � Fel ¼ aFel: ð16Þ

The logarithmic strain with respect to the intermediate state is
then

eL� ¼ lnðV�Þ ¼ lnðaVÞ ¼ I lnðaÞ þ lnðVÞ ¼ I lnðaÞ þ eL; ð17Þ

where V is the left stretch tensor. Finally, the Cauchy stress r, or the
true stress in the final state, is calculated in incremental form
according to

dr ¼ C : deL� ; ð18Þ

where C is the fourth-order elastic stiffness tensor for quartz. To cal-
culate the Cauchy stress at the i + 1th time step, the Cauchy stress
increment is simply added to the previous Cauchy stress, i.e.,

riþ1 ¼ ri þ dr: ð19Þ

The above constitutive relations are implemented in the Aba-
qus/Explicit user material subroutine VUMAT (Abaqus v6.10 The-
ory Manual, 2010). To verify the proper implementation of the
constitutive relations, the behavior of a block of a-quartz under
uniform hydrostatic pressure is analyzed. Equal pressure loads
are applied to five of the six faces of the cube, with the rear face
fixed in the Z direction, creating a hydrostatic compression state
of stress in the material. The load increases gradually from 0 to
9 GPa so that the behavior of the cube can be clearly observed both
before and after the transition pressure of 2.35 GPa.

The behavior of the unit cube can be seen in Fig. 5(a), which
shows the hydrostatic pressure as a function of uniaxial strain.
Due to the symmetry of the model, all strain components are equal,
as the strain represents the strain in any direction. A key observa-
tion from the figure is that, when the transition pressure of
2.35 GPa is reached, the hydrostatic pressure remains nearly
constant as the transformation occurs and the volume contracts.
However, below and above this transition pressure, the stress is
linearly related to the strain, as expected.

The change in the element volume can be seen in Fig. 5(b),
where the normalized element volume is plotted as a function of
time. The two curves represent, respectively, the case without
phase transform (blue) and with the phase transform (red). Once
the critical transformation pressure is reached, phase transforma-
tion occurs and a sudden decrease of 8.82% in volume is seen, indi-
cating the occurrence of the phase transformation.
3.3. Steel fibers

The Johnson–Cook model is used to describe the behavior of the
steel fibers. This model allows the rate-dependent hardening
behavior of steel to be accounted for. The Johnson–Cook constitu-
tive relation can be expressed as

�rð�ep; _ep; TÞ ¼ ðAþ Bð�epÞnÞ 1þ Clog
_ep

_e0

� �� �
1� T � Ttr

Tm � Ttr

� �m� �
: ð20Þ

Here, A, B, C, m, and n are material parameters that are calibrated
using experimental data (Zhou et al., 2008). The first expression on
the right hand side accounts for strain hardening, the second
expression accounts for strain-rate hardening, and the third expres-
sion accounts for thermal softening. Model parameters are listed in
Table 3. The use of the Johnson–Cook relation partly reflects the
nature of the deformations analyzed and partly reflects the fact that
extensive experimental data is available and has been used to cali-
brate the this model for the conditions analyzed. Indeed, there are
more ‘‘sophisticated’’ models than Johnson–Cook. These models
may use different parameters or internal stare variables to deal
with issues such as complicated loading paths, varying stress triax-
iality, and deformation mechanisms. However, the key aspects of
the loading conditions analyzed in this paper are dynamic (also re-
flected in governing equations), rate-dependent, monotonic (no
unloading considered), and approximately proportional. Under
such conditions, the constitutive response of the steels considered
can be well-characterized as dependent on strain, strain rate and
temperature. Models using relations between stress and these
quantities are effectively similar or equivalent, as long as enough
parameters exist to allow a good fit to experimental data. Another
way to look at it is that, for the conditions stated above, many more
sophisticated models using, say, certain internal state variables
(ISVs) essentially simplify to relations involving stress, strain, strain
rate and temperature as independent variables.
3.4. Interfaces

Cohesive elements are specified between all bulk elements
boundaries with the exception of elements in the fibers, which
are assumed to undergo no fracture. The cohesive elements allow
for damage initiation and development. The use of a cohesive crack
zone for modeling fracture in concrete materials has a long and
well-established history, dating back to the 1970s with the work
by Hillerborg et al. (1976). The use of zero-thickness cohesive ele-
ments was established in 1989 by Gens et al. (1989). A bilinear
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Table 3
Parameters used in Johnson–Cook model for
reinforcing steel fibers.

Density (g/cm3) 7.8
Young’s modulus E (GPa) 203
Poisson’s ratio (m) 0.28
A (MPa) 792
B (MPa) 510
n 0.26
C 0.014
Troom (K) 300
Tmelt (K) 1793
m 1.03
_e0 (s�1) 1
Specific heat (J/kg K) 477
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traction-separation law is adopted to govern the behavior of the
cohesive elements (Camanho et al., 2003). The use of a bilinear
traction-separation law to model fracture in concrete materials
was first formulated by Petersson (1981) in 1981 and has seen
extensive use in the time since (Roesler et al., 2007). Newer rela-
tions, such as those by (Xu and Needleman (1993), Park et al.
(2009), Mosler and Schneider (2011), Tomar et al. (2004), Zhai
et al. (2004), potentially allow for more complete descriptions of
various features. Such relations may require more parameters.
Fundamentally, these relations share many common attributes,
such as (1) mixed-mode nature that allows for combined normal
and shear separations, and (2) control over the artificial elastic
behavior introduced by the presence of cohesive elements. The
cohesive traction-separation law used here possesses these attri-
butes, while maintaining a balance between readily available
material parameters and the flexibility to simulate the primarily
mode II failure considered.

The linear-elastic part of the traction-separation law relates the
traction vector t to the element stiffness K and the separation u
resulting from the traction vector t. This relationship is given by

t ¼ Ku: ð21Þ

The above equation can be expressed in matrix form to indicate
coupling between the normal and shear components of the trac-
tion-separation relationship, i.e.,
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Full coupling between normal and shear components in the
traction-separation response is represented by the off-diagonal
terms. For the purposes of this work, an uncoupled relation is
chosen, i.e.,
tn
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Although the linear-elastic part of the response has no coupling
between shear and normal components, damage initiation and
evolution have a mixed-mode form. Damage initiation follows
the quadratic interaction relationship shown in Eq. (24), where tn

is the normal stress in a cohesive element, ts is the shear stress
in one shear direction, tt is the shear stress in the other in-plane
shear direction, and t0

n, t0
s , t0

t are the critical values of tn, ts, tt,
respectively. These critical values represent the cohesive strengths
for pure normal or shear separation in the corresponding direc-
tions. In this paper, t0

s and t0
t are assumed to have the same value

that is different from the value of t0
n. Because it is not physically

meaningful for compressive tractions to contribute to damage ini-
tiation, only non-negative (tensile) normal tractions are considered
in the damage initiation rule. This is indicated by the presence of
the Macaulay brackets around tn. Damage is initiated when

htni
t0

n

 !2

þ t5

t0
5

 !2

þ tt

t0
t

 !2

¼ 1: ð24Þ

Once damage is initiated in a cohesive element, the interface
follows the mixed-mode fracture criterion of Benzeggagh and Ken-
ane given in Eq. (25) Benzeggagh and Kenane, 1996. In this rela-
tionship, Gn, Gs, and Gt are the work performed by tractions tn, ts,
and tt, respectively. GC

n , GC
s and GC

t are the critical fracture energies
in the normal and shear directions, respectively. These quantities
are used to determine the degree of damage in a cohesive surface
pair. For convenience, the critical fracture energies in the two shear
directions are treated as equal (i.e., GC

s ¼ GC
t ). The criterion is writ-

ten as

GC
n þ GC

S � GC
n

� � GS þ Gt

Gn þ GS þ Gt

� �g

¼ GC : ð25Þ

There are four interface zones in the model, i.e., paste-paste,
quartz-quartz, quartz-paste, and fiber-paste. The constitutive
behavior of all cohesive elements modeled in this study follows
the same constitutive law; however, the calibration of the trac-
tion-separation stiffness, peak traction across the element (t0

i ),
and the normal and shear fracture energies (Gf

n and Gf
s) is specific

to each type of interface. The parameters for all cohesive relations
used in this study are presented in Table 4. The values in the table
are based on experimental data for concrete with and without fiber
reinforcement (Li, 1994; Shen and Paulino, 2011). Although Gf

s has
often been assigned higher values than Gf

n, these quantities have
also been assigned similar values in the literature (Carpinteri
et al., 1993; Fracture Mechanics of Concrete Structures, 1992). In
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the calculations of this paper, failure is almost exclusively mode II
(sliding under pressure); mode I does not manifest. The choice of
Gf

n does not make a significant difference in the results.
As shown in Table 4, the traction-separation stiffness for cohesive

elements along interfaces between the phases and within the bulk
phases is 103 times the stiffness of the corresponding bulk elements.
This choice has two benefits. First, artificial softening of the model is
avoided. Second, the work of separation associated with the linear-
elastic portion of the cohesive behavior is minimized, ensuring that
the bulk of the work is in the fracture energy, providing adequate
softening in the cohesive response. Although the method of constit-
uent preparation can have a significant influence on the resulting
composite fracture toughness (Abell and Lange, 1998), only a single
set of interface properties are considered in this paper.

3.5. Interfacial contact and friction

After failure of cohesive elements, contact between bulk ele-
ments leads to frictional sliding. Contact between element faces
is incorporated into the model using the a contact algorithm sim-
ilar to that developed by Camacho and Ortiz (Camacho and Ortiz,
1996). The algorithm identifies free surfaces and fractured surfaces
as potential contact surfaces in each time step of the simulation.
Nodal coordinates at the end of every time step are used to define
master and slave surfaces for the next time step. Nodal displace-
ments are then calculated at the beginning of every time step.
The corresponding nodal coordinates are used to check whether
nodes of one internally defined surface have penetrated another
internally defined surface. If penetration is predicted, then penalty
forces of sufficient magnitude are applied to the surfaces in the
direction of their normal such that there is contact between them
but no interpenetration. For surfaces that are in contact, the Cou-
lomb friction law governs the interfacial friction force. The coeffi-
cient of sliding friction for all interfaces is chosen to be 0.6, a
typical value for cement-on-cement sliding (Building Code
Requirements for Structural Concrete, 1995). It is assumed that
the static and dynamic coefficients of friction are the same.
4. Results and discussion

To delineate the effect of the phase transformation on the
response of UHPC, the results of simulations not accounting for
the phase transformation (as discussed in Buck and McDowell
(2012)) are compared with the results of calculations that do
account for the transformation. The two sets of calculations are
conducted under the same loading and constraint conditions. The
former set of simulations will be referred to as the ‘‘baseline’’
simulations. The latter set of simulations will be referred to as
the ‘‘transformation-enabled simulations’’.

4.1. Effect of phase transformation on load-carrying capacity

As the stress wave propagates through a microstructure, the
hydrostatic pressure exceeds the threshold of 2.35 GPa behind
Table 4
Parameters for cohesive surfaces.

Material Cement Quartz aggregate Ce

Kn (TPa) 22.9 96.6 22
Ks/t (TPa) 9.5 44.7 9.
t0

n (MPa) 40.0 50.0 10

t0
s=t (MPa) 25.0 40.0 6.

Gc
n (J/m2) 40.0 15.0 5.

Gc
s=t (J/m2) 40.0 15.0 5.

g 1.45 1.45 1.
the wave front, causing the quartz aggregate to transform into
coesite as shown in Fig. 6. The particular microstructure shown
contains 40% aggregate, 0% porosity, and 10% fibers by volume.
Fig. 6(a) shows the microstructure at 0.5 ls. At this early stage,
the stress wave has just begun to propagate through the material,
only quartz at the very top of the microstructure has transformed
into coesite. In Fig. 6(b), which corresponds to 3.0 ls, the stress
wave has traversed approximately half the length of the structure.
All quartz behind the wave front has transformed into coesite,
while all the quartz ahead of the wave front remains in the a-
quartz phase. Fig. 6(c) shows the microstructure at 6.0 ls, where
the stress wave has almost reached the bottom surface, and essen-
tially all quartz in the structure is in the coesite state.

The load-carrying capacity as measured in the transformation-
enabled simulations is compared to that from the baseline simula-
tions in Fig. 7. As described in the companion paper, (Buck et al.,
2012), the average traction in the vertical direction on the upper
surface of a microstructure at any single time step is taken to be
a measure of the load carried. This figure shows four subplots, each
corresponding to a different aggregate volume fraction. The hori-
zontal axes correspond to the fiber and porosity volume fractions.
The vertical axis shows the ratio of the load-carrying capacity cal-
culated from the simulations with the quartz phase change to the
load-carrying capacity from the baseline simulations without the
phase change. The results show a minor downward shift in the
load-carrying capacity. In particular, the load-carrying capacity
calculated from the simulations with the phase change is in the
range of +1.5–�10.1% of the load-carrying capacity calculated from
the baseline simulations.

As Fig. 7 shows, the load-carrying capacity ratio decreases
continuously as the aggregate volume fraction increases. The
load-carrying capacity ratio is relatively insensitive to fiber or
porosity content; that is, it is rather constant at a given aggregate
volume fraction. The fact that the load-carrying capacity decreases
relative to the baseline case with increasing aggregate content
suggests that the phase transformation leads to more internal
damage within the aggregate, which, in turn, reduces the load
carried by the material. This effect is undesirable.

4.2. Effect of phase transformation on energy-dissipation capacity

4.2.1. Effect of phase transformation on total energy dissipation
The quartz phase transformation has a more significant effect

on the total energy dissipation than on the load-carrying capacity.
The ratio of the total energy dissipation calculated from the
transformation-enabled simulations to the total energy dissipation
calculated from the baseline simulations is shown in Fig. 8. For the
sake of brevity, this ratio will be referred to as the ‘‘total energy ra-
tio’’. The simulations with the phase transformation lead to higher
energy dissipation values. Specifically, the total energy dissipation
calculated from the simulations with the phase change is in the
range of +0.3–+18.5% of the energy dissipation calculated from
the baseline simulations. At low aggregate volume fractions, the
total energy ratio is almost unity, indicating that the energy dissi-
pation has not changed appreciably. However, as the aggregate
ment-aggregate interface Cement-fiber interface

.9 22.9
5 9.5
.0 10.0

0 6.0

0 5.0
0 5.0

45 1.45
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Fig. 6. Phase transition of quartz aggregate as deformation progresses at: (a) 0.5 ls,
(b) 3.0 ls, and (c) 6.0 ls.
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volume fraction increases, the energy dissipation relative to the
baseline increases. At 10% aggregate, the maximum energy ratio
is 1.03. At 20% aggregate, the maximum total energy ratio is
1.08. At 30% aggregate, the maximum total energy ratio is 1.12.
At 40% aggregate, the maximum energy ratio is 1.20. This suggests
that the transformation of the aggregate enhances various
Fig. 7. Ratio between the load-carrying capacity for cases with quartz phase transformat
for microstructures with (a) 10% aggregate, (b) 20% aggregate, (c) 30% aggregate, and (d
mechanisms of energy dissipation, as increasing aggregate levels
lead to increasing energy dissipation relative to the baseline cases.
This will be analyzed in more detail in subsequent sections when
the contributions from different mechanisms to the total energy
dissipation are considered individually.

At a given aggregate volume fraction, the effects of fibers and
porosity on the total energy ratio are more complex than the rela-
tionship seen in the load-carrying capacity ratio. Note in Fig. 8(a)
that at 10% aggregate, the energy dissipation ratio is relatively con-
stant over all porosity and fiber volume fractions. In contrast,
Fig. 8(d), which corresponds to an aggregate volume fraction of
40%, the energy dissipation ratio is still relatively constant at a gi-
ven porosity level, but increasing the porosity decreases the ratio.
Since the only difference between the two simulations is the treat-
ment of the quartz aggregate, it would be natural to think that only
the aggregate volume fraction should change the results. However,
the fact that increasing porosity decreases the energy dissipation
relative to the baseline cases indicates that there is a coupling be-
tween the porosity volume fraction and the quartz phase transfor-
mation. In particular, low porosity volume fractions yield a higher
total energy dissipation than that of the baseline case, while high
porosity volume fractions decrease the additional energy dissipa-
tion induced by the phase transformation. Although the highest
porosity volume fraction considered in this study, 5%, still produces
a total energy ratio above unity, the foregoing discussion suggests
that there is a porosity volume fraction at which the total energy
ratio is exactly one. Such a result may conceal the fact that the
quartz phase transformation leads to more fracture and friction
within the aggregate phase.

The quartz phase transformation introduces a new component
of energy dissipation. When the phase transformation initiates,
the volume of the quartz aggregate reduces. This reduction in vol-
ume is an energy-consuming process. The energy dissipated
through this mechanism is related to the volume of the aggregate
ion and the load-carrying capacity for cases without transformation (baseline cases)
) 40% aggregate.



Fig. 8. Ratio between total energy dissipation for cases with quartz phase transformation and the total energy dissipation for cases without transformation (baseline cases)
for microstructures with (a) 10% aggregate, (b) 20% aggregate, (c) 30% aggregate, and (d) 40% aggregate.
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that has undergone transformation, the change in volume, and the
threshold pressure of transformation. This component is included
along with interface damage, friction, and inelastic deformation
in the computation of the total energy dissipation. The magnitudes
of these four energy dissipation modes relative to each other will
be discussed further in the next section.
4.2.2. Effect of phase transformation on energy dissipation modes
This section considers how the quartz phase transformation af-

fects the contributions of different mechanisms to the total dissi-
pation over the course of the deformation process. Subsequent
sections will consider the effect of phase transformation on the
individual energy dissipation modes. Fig. 9 shows the evolution
of the energy dissipation modes in a microstructure with 40%
aggregate, 0% porosity, and 0% fibers. The subscripts d, p, f, and tr
refer to energy dissipated through damage, plasticity, fracture,
and phase transformation, respectively. Recall that this microstruc-
ture provides the highest total energy dissipation ratio (see Fig. 8).
Fig. 9(a) corresponds to the simulation with the quartz phase
transformation, while Fig. 9(b) corresponds to the simulation with-
out the phase transformation. It can be seen that, as compared to
the simulation that does not account for phase transformation,
the results of the transformation-enabled simulation show a larger
percentage of energy dissipation due to friction, and less due to
inelastic deformation. In particular, friction accounts for 36.9% of
the total energy dissipation and inelastic deformation accounts
for 62.3% of the total energy dissipation in the transformation-en-
abled simulation. In the baseline simulation, friction accounts for
20.6% of the total energy dissipation, and inelastic deformation ac-
counts for 79.2% of the total energy dissipation. In both cases, the
energy dissipated through interface damage and fracture is less
than 0.5%. However, differences are evident. Interface damage
and fracture dissipates 0.29% of the total energy imparted into
the material by the applied load in the transformation-enabled
simulation, whereas dissipation through interface damage and
fracture constitutes only 0.13% of the total energy input in the
baseline simulations. Because the loading and constraint condi-
tions are identical in all cases, an increase in frictional dissipation
is not possible without an increase in interface fracture. Clearly,
then, the quartz phase transformation does not lead merely to
more interface damage alone, but also leads to a higher crack den-
sity. This increased crack density then gives rise to the significant
increase in energy dissipation discussed previously. This will be
further analyzed in the next section.

Fig. 9(a) also shows the energy dissipated through phase trans-
formation of the quartz aggregate for a microstructure with 40%
aggregate, 0% porosity, and 0% fibers. At 6.0 ls, the phase transfor-
mation contributes less than 1.5% of the total energy dissipation.
All other microstructures show even smaller proportions of energy
dissipated through phase transformation. Although the transfor-
mation itself dissipates a relatively small amount of energy, it in-
duces substantially higher energy dissipation by enhancing other
dissipation mechanisms. This will be quantified in the next three
sections that address the three mechanisms of interface damage,
interface friction, and inelastic deformation individually.

Further insight into the relationships between the phase vol-
ume fractions, the quartz phase transformation, and energy dissi-
pation can be gained by considering the three components of
energy dissipation.
4.2.3. Effect of phase transformation on energy dissipated through
interface damage and fracture

Fig. 10 shows the ratio of the energy dissipation through inter-
face damage in the transformation-enabled simulations to that of
the baseline simulations. For the sake of brevity, this ratio will be
referred to as the ‘‘damage dissipation ratio’’. In all microstruc-
tures, the damage energy ratio is higher than one, indicating that
the phase transformation leads to greater frictional dissipation.
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The quartz phase transformation has a strong effect on the energy
dissipated via interface damage and fracture. The phase transfor-
mation yields damage dissipation levels that are up to 94.0% higher
than those of the baseline cases.

Aggregate and porosity have competing effects on the damage
dissipation ratio, and this trend becomes more pronounced at
higher aggregate volume fractions. At 10% aggregate and 0% fibers,
decreasing the porosity from 5% to 0% increases the damage energy
ratio from 1.13 to 1.23, giving a net change of 0.1. At 40% aggregate
and 0% fibers, decreasing the porosity from 5% to 0% increases the
damage energy ratio from 1.52 to 1.87, a net change of 0.35. The
highest ratios are seen at an aggregate volume fraction of 40%
and a porosity volume fraction of 0%. The lowest ratios are seen
at an aggregate value fraction of 10% and a porosity volume frac-
tion of 5%.
Fig. 10. Ratio between the energy dissipated through damage for cases with quartz pha
phase transformation (baseline cases) for microstructures with (a) 10% aggregate, (b) 20
The trends in the damage dissipation ratio bear resemblance to
the trends in the total energy dissipation ratio. Both ratios increase
with increasing aggregate fraction. Both ratios are negatively af-
fected by the porosity volume fraction, and the influence of poros-
ity becomes more pronounced at high aggregate volume fractions.
The underlying cause for the coupling between aggregate and
porosity can be determined by looking at the energy dissipated
through damage and fracture along different types of interfaces.

Fig. 11 shows the energy dissipated through damage and
fracture of the cement phase, fracture of the quartz phase, and
debonding along the cement-quartz interfaces in microstructures
with 40% aggregate, and 0% fibers. The top row, i.e., Fig. 10(a)
and (b), corresponds to microstructures with 0% porosity. The bot-
tom row, i.e., Fig. 10(c) and (d), corresponds to microstructures
with 5% porosity. The left column, i.e., Fig. 10(a) and (c),
se transformation and the energy dissipated through damage for cases without the
% aggregate, (c) 30% aggregate, and (d) 40% aggregate.
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corresponds to cases without the quartz phase transformation. The
right column, i.e., Fig. 10(b) and (d), corresponds to cases with the
quartz phase transformation. First, consider the left column. With-
out the phase transformation, damage and fracture within the
cementitious matrix and quartz aggregate comprise roughly half
of the overall damage dissipation regardless of the porosity level.
In particular, at 0% porosity, damage dissipation within the cemen-
titious matrix and quartz aggregate constitute 51.2% and 47.8%,
respectively, of the overall damage dissipation. At 5% porosity,
damage dissipation within the cementitious matrix and quartz
aggregate constitute 52.0% and 47.1%, respectively, of the overall
damage dissipation. Clearly, the porosity does not have an appre-
ciable influence on the locations of interface damage in the absence
of the phase transformation. Now consider the right column. At 0%
porosity, a much larger proportion of the damage dissipation is
attributable to intra-quartz fracture with the phase transforma-
tion. Specifically, 72.1% of the total is attributable to fracture sur-
faces inside the quartz phase, while only 27.2% is attributable to
fracture surfaces within the cementitious matrix. Also, note that
increasing porosity lowers the fraction dissipation attributable to
the quartz aggregate. At 5% porosity, damage and fracture within
the quartz aggregate drops to 65.1% of the total, while damage
and fracture dissipation within the cementitious matrix increases
to 34.2% of the total. Since increasing the porosity decreases the
damage dissipation ratio, as seen in Fig. 10, the shift cannot be sim-
ply due to increased damage and fracture within the cementitious
matrix resulting from higher porosity when phase change is con-
sidered. Rather, the shift is due to the lower stresses in the quartz
Fig. 11. Fraction of energy dissipated through damage and fraction of energy dissipated t
microstructures with 40% aggregate, 0% fibers, and (a) 0% porosity without phase transfo
transformation, and (d) 5% porosity with phase transformation.
aggregate at higher porosity levels. Such lower stresses make
transgranular fracture less likely. A look at the crack density pro-
vides more insight in this regard.

In this paper’s companion work (Buck et al., 2012), the crack
density is used to quantify the extent of cracking within the UHPC
microstructures. The same technique is used in the transforma-
tion-enabled simulations. Due to the complexity in comparing
the two-dimensional crack density tensor among microstructures
with three constituent phases, the scalar crack density parameter
is used to assess the influence of the quartz phase transformation
on the extent of cracking. Fig. 12 shows the ratio of the scalar crack
density parameter in the transformation-enabled simulations to
the scalar crack density parameter in the baseline simulations. At
all aggregate volume fractions, the case with phase transformation
has at least twice the amount of cracking than the case without
phase transformation. At high fiber volume fractions and low
porosity volume fractions, the case with phase transformation
leads to almost five times the amount of cracking than the case
without transformation. As the porosity volume fraction increases,
the crack density ratio decreases, even for large fiber volume frac-
tions. This trend is similar to the trend observed in the damage en-
ergy dissipation ratio. This indicates that increasing the porosity
volume fraction brings the amount of cracking in the baseline
and transformation-enabled simulations closer together. In other
words, increasing the porosity volume fraction provides stress re-
lief within the quartz aggregate, leading to less cracking within
the quartz aggregate than would otherwise occur at lower porosity
levels.
hrough fracture (intra-cement, intra-quartz, and along cement-quartz interfaces) in
rmation, (b) 0% porosity with phase transformation, (c) 5% porosity without phase



1890 J.J. Buck et al. / International Journal of Solids and Structures 50 (2013) 1879–1896
4.2.4. Effect of phase transformation on energy dissipated through
friction between fractured interfaces

The ratio of the frictional energy dissipation calculated from the
transformation-enabled simulations to the frictional energy
dissipation calculated from the baseline simulations is shown in
Fig. 13. For the sake of brevity, this ratio will be referred to as
the ‘‘friction energy dissipation ratio’’. The quartz phase transfor-
mation has a drastic effect on the energy dissipated through
friction between fractured interfaces. In particular, the phase
transformation yields frictional energy dissipation levels that are
up to 113% higher than those of the baseline simulations. The
trends in the friction energy ratio bear resemblance to the trends
in the damage energy ratio. The friction energy ratio increases with
increasing aggregate content and decreasing porosity content.
However, there is one exception to the similarities with the
damage energy ratio. In the previous section, the damage energy
ratio is independent of the fiber volume fraction. In this case, high-
er fiber volume fractions tend to decrease the friction energy ratio.

There is a competition between the effects of aggregate and fi-
bers on the friction energy ratio. The influence of fibers is most pro-
nounced at low aggregate volume fractions. For example, at 10%
aggregate and 0% porosity, increasing the fiber volume fraction
from 0% to 10% decreases the friction energy ratio from 1.77 to
1.34. In contrast, at 40% aggregate, increasing the fiber volume
fraction from 0% to 10% only decreases the friction energy ratio
from 2.13 to 2.07. This suggests that at low aggregate volume frac-
tions, fibers can effectively reduce the increase in frictional dissipa-
tion caused by the quartz phase transformation. However, at high
aggregate volume fractions, increasing the fibers has only a mini-
mal effect on the frictional dissipation enhancement due to the
phase transformation.

It is instructive to note that dissipation along crack faces and
dissipation within the bulk constituents do not occur indepen-
Fig. 12. Ratio of scalar crack density parameter between simulations accounting fo
transformation; (a) 10% aggregate, (b) 20% aggregate, (c) 30% aggregate, and (d) 40% ag
dently. The relative magnitudes of the different forms of dissipa-
tion may be different if, say, the material constitutive relation is
changed. In particular, an uncapped Drucker–Prager relation is
used here for the cementitious matrix and the aggregate. If a
capped model is used instead, quantifications different from what
is reported here may be obtained. In the model of this paper, both
shear failure and crushing failure within the bulk matrix material
are considered. Crushing can occur through the collapse of voids/
porosity 100 lm in size at different volume fractions – these voids
are explicitly modeled, i.e., there are no finite elements in the re-
gions of the voids. Only pores below this size are implicitly consid-
ered in the Drucker–Prager constitutive relation. It would be
interesting and worthwhile in the future to study how different
forms of dissipation change as material constitutive behavior or
relation is changed (e.g., a capped Drucker–Prager relation is used).
Here, we focus on a framework for establishing microstructure-
performance relations, as detailed in Section 4.3 below, with a par-
ticular set of constitutive relations.

4.2.5. Effect of phase transformation on energy dissipated through
inelastic deformation

The ratio of the inelastic energy dissipation calculated from the
transformation-enabled simulations to that as calculated from the
baseline simulations is shown in Fig. 14. For the sake of brevity,
this ratio will be referred to as the ‘‘inelastic dissipation ratio’’.
The quartz phase transformation can decrease the energy dissi-
pated through inelastic deformation by up to 9.3% compared to
the baseline results. At a given aggregate volume fraction, the
inelastic dissipation ratio is highest at low porosity volume frac-
tions and high fiber volume fractions. In particular, the highest
inelastic dissipation ratio of 0.99 is at 10% aggregate, 0% porosity,
and 7.5% fibers. The lowest is seen at 40% aggregate, 5% porosity,
and 0% fibers.
r quartz phase transformation and the baseline simulations without the phase
gregate.



Fig. 13. Ratio of energy dissipated through interfacial friction between simulations accounting for quartz phase transformation and baseline simulations without the phase
transformation; (a) 10% aggregate, (b) 20% aggregate, (c) 30% aggregate, and (d) 40% aggregate.
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Note that at a given aggregate and fiber volume fraction, larger
porosity volume fractions lead to lower inelastic dissipation ratios.
This suggests that, in the absence of the quartz phase transforma-
tion, increasing the porosity leads to more plastic dissipation com-
pared with the case without transformation.
Fig. 14. Ratio of energy dissipated through inelastic deformation between simulations
phase transformation; (a) 10% aggregate, (b) 20% aggregate, (c) 30% aggregate, and (d) 4
Overall, the phase transformation enhances energy dissipation.
This is a desirable effect in applications such as infrastructure
protection or blast mitigation. This effect is opposite to the effect
of the transformation on the load-carrying capability discussed
earlier. Obviously, the competing effects often require a tradeoff
accounting for quartz phase transformation and baseline simulations without the
0% aggregate.
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which can only be reached through systematic and quantitative
relations between material microstructure and performance
parameters as discussed below.

4.3. Microstructure-performance relation maps

In the first part of this study (Buck et al., 2012), a set of
microstructure-performance relation maps that relate the volume
fractions of the constituents to the load-carrying and energy-dissi-
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necessary material attributes are then identified. An updated
microstructure-performance relation map is shown in Fig. 15 that
accounts for the effects of the quartz phase transformation. To
facilitate comparison with the relations developed without consid-
eration of the phase transformation, the results of g1, g2, and g3 are
superimposed over Fig. 15(a)–(c), respectively. In Fig. 15(a) the
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Fig. 17. Constituent volume fractions that satisfy three different values of the combined performance parameter g4.
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vertical axis shows a combined performance metric defined as the
product of the energy-dissipation capacity and the load-carrying
capacity. Here, the energy-dissipation capacity is expressed as
the total energy dissipation normalized by the total external work;
that is, the total work dissipated as a fraction of the total work im-
parted into the material. The load-carrying capacity is expressed as
the traction on the upper surface of a given microstructure normal-
ized by the traction on the upper surface of a microstructure com-
prised of 100% cementitious matrix. The horizontal axis is a
parameter that depends on the traction carried by the material
and the volume fractions of the constituents in microstructures.
This parameter is obtained through a linear regression analysis
and takes the form of
5 0.055η =

5 0.065η =
5 0.075η =

Fig. 18. Isosurfaces for the g5 parameter with shading indicating the value of the g6

parameter within the design space used in this study.
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which provides the best description of the correlation among dissi-
pation, loading carried, and microstructure. In the above relation, as
well as in Eqs. (27) and (28) below, Va

f , Vf
f , and Vp

f refer to the
volume fractions of aggregate, fibers, and porosity, respectively.
The chart in Fig. 15(a) can be used to select a desired microstructure
setting for any given combination of load-carrying capacity and en-
ergy-dissipation capacity. The relations also illustrate the trade-offs
between energy dissipation and strength in microstructure design.
Fig. 15(b) relates the energy-dissipation capacity to the volume
fractions of constituents. The parameter that provides the best
description of the correlation between the dissipation and micro-
structure is
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Fig. 15(c) relates the load-carrying capacity to microstructure.
The parameter that provides the best description of the correlation
between the load carried and microstructure is
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The relations in Eqs. (26)–(28) correspond to the design space
for which the ranges of the input variables are 10% 6 Va

f 6 40%,
0% 6 Vf

f 6 10%, and 0% 6 Vp
f 6 5%. These microstructure-perfor-

mance relations bear many similarities to those presented in the
first part of this study (Buck et al., 2012). A key difference is that
in the first part (Buck et al., 2012), g1 (which corresponds to g4

here) has exponents of 0.47, 3.0, and 2.6 for the aggregate, fiber,
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Fig. 19. Isosurfaces for the g6 parameter with shading indicating the value of the g5

parameter within the design space used in this study.

Fig. 20. Boundaries of g5 and g6 for the range of constituent volume fractions
considered in this study.
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and porosity phases, respectively. This illustrates that the phase
transformation alters the significance of the aggregate and porosity
in the dynamic response of UHPC, while the significance of the fi-
bers is relatively independent of the transformation. This differ-
ence demonstrates that the phase transformation lends the
aggregate a much stronger influence on energy dissipation and
should be accounted for in the design of UHPC structures to better
mitigate the threats of dynamic loading with high pressures.

Fig. 15(a) shows that for a given level of energy-dissipation and
load-carrying capacity, a larger value of g1 is required as compared
to g4. A similar trend can be observed in Fig. 15(b). In Fig. 15(c), for a
given load-carrying capacity, a larger value of g6 is required as com-
pared to g3. Because of the nature of the parametric expressions, the
relationship between volume fractions of the constituents and the
parameters is not one-to-one. That is, multiple microstructural
compositions can yield the same parameter value. Fig. 16 shows
the values of the microstructure performance parameters taken
on by the whole range of microstructure instantiations analyzed.
Each point in Fig. 16(a)–(f) represents one of the 60 unique combi-
nations of volume fractions of the constituents. The color of each
point corresponds to the value of the parameter as indicated by
the color scale legend. The lowest values of g1 and g4 are seen at
low volume fractions of aggregate, fibers, and porosity. Microstruc-
tures with high aggregate, high fiber, and low porosity contents
show parameter values similar to microstructures with high aggre-
gate, low fiber, and high porosity contents. Parameters g2 and g5

show similar relationships. Microstructures with high aggregate
and high fiber volume fractions show the highest values of g3 and
g6 with only a minor influence from porosity. Microstructures with
low aggregate and low fiber volume fractions show the lowest val-
ues of g3 and g6. Finally, similar to what is discussed in Buck and
McDowell (2012) for g1, g2, and g3, the parameters g4, g5, and g6

are not fully independent of each other. The parameter g4 is approx-
imately equal to the product of g5 and g6, i.e., g4 � g5g6. This corre-
lation provides insight and a means for analyzing the trade-offs
between the competing performance metrics.

The observation that multiple microstructural compositions can
yield the same performance parameter value is shown in more de-
tail in Fig. 17. This figure illustrates how different combinations of
the constituent volume fractions can yield the same performance
parameter g4. In the surface plots shown in the figure, any combi-
nation of constituent volume fractions shown on a single plot will
provide a fixed parameter value as indicated. The region in white in
the plot for g4 = 0.06 is not physically meaningful, as aggregate vol-
ume fractions greater than zero are mathematically required. At all
g4 values, changes in the constituent volume fractions have the
same influence on the performance parameter.

It should be emphasized that the performance parameters
obtained through the relations in Eqs. (14)–(16) are valid only for
the ranges of volume fractions considered (10% 6 Va

f 6 40%,
0% 6 Vf

f 6 10%, and 0% 6 Vp
f 6 5%). The advantage of systemati-

cally investigating the behavior of UHPC over a wide range of con-
stituent volume fractions is that a wide range of possible
performance can be obtained. More importantly, the interplays be-
tween different factors can be revealed. Fig. 18 shows a series of
isosurfaces for g5 within the 3D design space considered. Across
any single surface, the value of g5 remains constant. The shading
indicates how g6 changes even as g5 remains constant. This figure
shows that if the desired energy dissipation is specified, the load-
carrying capacity can be optimized without altering the energy-
dissipation parameter. A similar figure is shown in Fig. 19, which
switches the position of the two parameters. This figure shows iso-
surfaces for g6 with the contour shading corresponding to g5. This
figure shows that if the desired load-carrying capacity is specified,
the energy-dissipation capacity can be optimized without altering
the load-carrying capacity parameter.
Because the equations for the performance parameters are only
valid for the range of constituent volume fractions considered
(10% 6 Va

f 6 40%, 0% 6 Vf
f 6 10%, and 0% 6 Vp

f 6 5%), the param-
eters themselves are bounded. This is shown in Fig. 20, which out-
lines all possible combinations of g5 and g6 for the constituent
volume fractions considered. Values of the two performance
parameters lying off the solid color region are not attainable with
microstructural compositions within the design space considered.
The shading of the color region in the figure corresponds to the va-
lue of the combined performance parameter g4. Because g4 is the
product of g5 and g6, g4 is clearly larger when the two individual
parameters are larger. However, it is impossible to maximize both
g5 and g6 within the bounds of the design space considered. If the
maximum value of g6, roughly 1.32, is chosen, then a suboptimal
value of g5 must be accepted. Conversely, if the maximum value
of g5, roughly 0.085, is chosen, then a suboptimal value of g6 must
be accepted.



Fig. 21. Illustration of a microstructure design tool based on the Inductive Design Exploration Method (IDEM) that allows users to select the performance parameters
independently and shows the portion of the design space that meets or exceeds the specified performance criteria for (a) g4 = 0.0584 and g6 = 0.95, (b) g4 = 0.07083 and
g6 = 0.95, (a) g4 = 0.05525 and g6 = 1.1227.
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Finally, the microstructure-performance relations is used in a
framework incorporating the Inductive Design Exploration Method
(IDEM) (Choi et al., 2008) to provide a tool that can be used to iden-
tify allowable material designs (sets of constituent volume frac-
tions constituting permissible input space) that satisfy a given
set of performance criteria (i.e., a given output space). An illustra-
tion of this tool is shown in Fig. 21. Using this tool, a user can select
the two performance parameters g5 and g6 independently of the
other, the design software will identify and display microstructural
settings meeting or exceeding the desired performance criteria, i.e.,
having performance parameters g5 and g6 that are equal to or high-
er than the prescribed values.

5. Conclusions

Dynamic loading can give rise to elevated temperatures and
high pressures. In complex heterogeneous material systems such
as UHPC, the responses of the constituents to input with high tem-
peratures and pressures and the composition of the material com-
bine to determine the overall behavior of the material. In
particular, phase transformations induced by high pressures can
significantly change the overall behavior of the heterogeneous
materials. Proper accounting of such phase transformations can al-
low materials design to take advantage of these mechanisms in or-
der to tailor structural response for specific load applications.
Studies reported in this paper have yielded a phenomenological
model that accounts for the effects of the transformation of a-
quartz into coesite on the behavior of UHPC. This phenomenologi-
cal model is employed within the framework of a cohesive finite
element model to quantify the relations between the load-carrying
and energy-dissipating capacities of microstructures with different
volume fractions of phases. The quantification covers a range of the
microstructure parameters. In addition to yielding microstructure-
response relations that can be used in materials design and selec-
tion, calculations also reveal the following findings.

(1) Under the conditions of nominally uniaxial strain that
involve high stress triaxiality, the a-quartz-to-coesite phase
transformation decreases the load-carrying capacity of the
material relative to the case without transformation,
although this effect is relatively small.

(2) The phase transformation increases the total energy-dissipa-
tion capacity of materials by up to 18.5%, even though the
transformation itself dissipates less than 2% of the total
energy input into the material during a loading event. This
disproportional influence is a result of the effect of the trans-
formation on fracture. Specifically, the phase transformation
can increase the energy dissipated through crack surface
friction by 100% by enhancing the development of cracks.
Higher porosity levels and higher fiber volume fractions
can reduce this effect of phase transformation, with the
effect of fibers being more pronounced.

(3) The phase transformation decreases the energy dissipated
through inelastic deformation, and this influence diminishes
as aggregate and porosity volume fraction increases.

It is useful to point out that the forgoing study does not account
for the effect of temperature changes on the phase transformation
of the quartz aggregate and the thermal softening of steel fibers.
These thermal effects should be considered in future studies.
Acknowledgements

This research was sponsored by the US Department of Home-
land Security, Science and Technology Directorate, Infrastructure
Protection and Disaster Management Division: Ms. Mila Kennett,
Program Manager. The research was performed under the direction
of Dr. Beverly P. DiPaolo, Engineering Research and Development
Center (ERDC), US Army Corps of Engineers. Permission to publish
was granted by the Director, Geotechnical and Structures Labora-
tory, ERDC. Approved for public release; distribution is unlimited.

This research is part of a basic research demonstration project
on improvised explosive device effects and is performed in collab-
oration with the ERDC – Geotechnical and Structures Laboratory
(GSL), Oak Ridge National Laboratory, and Sandia National
Laboratories.

Views expressed are solely those of the authors and do not nec-
essarily reflect the opinions or policy of the US Department of
Homeland Security, the US Army Corps of Engineers, or any other
agency of the US Government, and no official endorsement should
be inferred.

The authors would also like to thank Brett Ellis and Chris Lammi
for their contributions to the development of the concrete struc-
ture instantiation code used in this study. MZ also acknowledges
support from the National Research Foundation of Korea through
WCU Grant No. R31-2009-000-10083-0 at Seoul National
University where he is a World Class University (WCU) Professor.



1896 J.J. Buck et al. / International Journal of Solids and Structures 50 (2013) 1879–1896
References

Abaqus v6.10 Theory Manual. 2010, Dassault Systemes.
Abell, A.B., Lange, D.A., 1998. Fracture mechanics modeling using images of

fractured surfaces. International Journal of Solids and Structures 35 (31–32),
4025–4033.

Aragao, F.T., Kim, Y., Lee, J., Allen, D., 2010. Micromechanical model for
heterogeneous asphalt concrete mixtures subjected to fracture failure. Journal
of Materials in Civil Engineering 23 (1), 30–38.

Benzeggagh, M.L., Kenane, M., 1996. Measurement of mixed-mode delamination
fracture toughness of unidirectional glass/epoxy composites with mixed-mode
bending apparatus. Composites Science and Technology 56 (4), 439–449.

Blacic, J.D., Christie, J.M., 1984. Plasticity and hydrolitic weakening of quartz single
crystals. Journal of Geophysical Research 89 (B6), 4223–4239.

Boettger, J.C., Lyon, S.P., 1990. New multiphase equation of state for polycrystalline
quartz. Los Alamos National Laboratory, Los Alamos, New Mexico.

Bose, K., Ganguly, J., 1995. Quartz coesite transition revisited. American
Mineralogist 80, 231–238.

Buck, J.J., McDowell, D.L., Zhou, M., 2012. Effect of microstructure on load-carrying
and energy-dissipation capacities of UHPC. Cement and Concrete Research 43
(2013), 34–50.

Building Code Requirements for Structural Concrete (ACI 318–95), 1995. American
Concrete Institute, Farmington Hills, Michigan, p. 369.

Calderon, E., Gauthier, M., Decremps, F., Hamel, G., Syfosse, G., Polian, A., 2007.
Complete determination of the elastic moduli of a-quartz under hydrostatic
pressure up to 1 GPa: an ultrasonic study. Journal of Physics: Condensed Matter
19 (43), 1–13.

Camacho, G.T., Ortiz, M., 1996. Computational modelling of impact damage in
brittle materials. International Journal of Solids and Structures 33 (20–22),
2899–2938.

Camanho, P.P., Davila, C.G., de Moura, M.F., 2003. Numerical simulation of mixed-
mode progressive delamination in composite materials. Journal of Composite
Materials 37 (16), 1415–1438.

Carpinteri, A., Valente, S., Ferrara, G., Melchiorri, G., 1993. Is mode II fracture energy
a real material property? Computers & Structures 48 (3), 397–413.

Cavil, B., Rebentrost, M., Perry, V., 2006. Ductal – an ultra-high performance
material for resistance to blast and impacts. In: First Specialty Conference on
Disaster Mitigation, Calgary, Alberta, Canada.

Choi, H.-J., McDowell, D., Allen, J.K., Rosen, D., Mistree, F., 2008. An inductive design
exploration method for robust multiscale materials design. Journal of
Mechanical Design 130, 031402–031413.

Drucker, D.C., Prager, W., 1952. Soil mechanics and plastic analysis or limit design.
Quarterly of Applied Mathematics 10, 157–165.

Ellis, B.D., Zhou, M., McDowell, D.L., 2012. Energy dissipation and strength evolution
of Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC), in Proceedings
of HiPerMat 2012 Third International Symposium on UHPC and
Nanotechnology for High Performance Construction Materials, Kassel
University Press, Kassel, Germany, 2, 273-281.

Flynn, D.R., 1998. Response of High Performance Concrete to Fire Conditions:
Review of Thermal Property Data and Measurement Techniques. National
Institute of Standards and Technology, Building and Fire Research Laboratory.

Fracture Mechanics of Concrete Structures, 1992. In: International Conference on
Fracture Mechanics of Concrete Structures. Beaver Run Resort, Breckenridge,
CO, CRC Press.

Gens, A., Carol, I., Alonso, E.E., 1989. An interface element formulation for the
analysis of soil-reinforcement interaction. Computers and Geotechnics 7 (1–2),
133–151.

Handoo, S.K., Agarwal, S., Agarwal, S.K., 2002. Physiochemical, minearalogical, and
morphological characteristics of concrete exposed to elevated temperatures.
Cement and Concrete Research 32 (7), 1009–1018.
Hill, R., 1952. The elastic behavior of a crystalline aggregate. Proceedings of the
Physical Society, Section A 65 (5), 349–354.

Hillerborg, A., Modeer, M., Petersson, P.E., 1976. Analysis of crack formation and
crack growth in concrete by means of fracture mechanics and finite elements.
Cement Concrete Research 6, 773–782.

Kimizuka, H., Ogata, S., Li, J., 2008. Hydrostatic compression and high-pressure
elastic constants of coesite silica. AIP 103, 053506.

Lammi, C., Li, H., McDowell, D., Zhou, M., Dynamic fracture and dissipation
behaviors of concrete at the mesoscale. Cement and Concrete Composites,
submitted for publication.

Lammi, C., McDowell, D., Zhou, M., 2011. Prediction of damage initiation in ultra
high-performance concrete during rapid heating. In: US National Congress on
Computational Mechanics, Minneapolis, MN.

Li, V., 1994. Determination of interfacial debond mode for fiber-reinforced
cementitious composites. Journal of Engineering Mechanics 120 (4), 707–720.

Morsy, M.S., Alsayed, S.H., Aqel, M., 2010. Effect of elevated temperature on
mechanical properties and microstructure of silica flour concrete. International
Journal of Civil & Environmental Engineering 10 (1), 1–6.

Mosler, J., Schneider, I., 2011. A thermodynamically and variationally consistent
class of damage-type coheisve models. Journal of the Mechanics and Physics of
Solids 59, 1647–1668.

Naus, D.J., 2010. A compilation of elevated temperature concrete material property
data and information for use in assessments of nuclear power plant reinforced
concrete structures. Oak Ridge National Laboratory.

Omer, A., 2007. Effects of elevated temperatures on properties of concrete. Fire
Safety Journal 42 (8), 516–522.

Park, K., Paulino, G., Roesler, J., 2009. A unified potential-based cohesive model of
mixed-mode fracture. Journal of the Mechanics and Physics of Solids 57, 891–
908.

Petersson, P.E., 1981. Crack growth and development of fracture zone in plane
concrete and similar materials. Lund Institute of Technology, Lund, Sweden.

Roesler, J., Paulino, G.H., Park, K., Gaedicke, C., 2007. Concrete fracture prediction
using bilinear softening. Cement and Concrete Composites 29 (4), 300–312.

Rong, Z., Sun, W., Zhang, Y., 2010. Dynamic compression behavior of ultra-high
performance cement based composites. International Journal of Impact
Engineering 37 (5), 515–520.

Shen, B., Paulino, G.H., 2011. Identification of cohesive zone model and elastic
parameters of fiber-reinforced cementitious composites using digital image
correlation and a hybrid inverse technique. Cement and Concrete Composites
33 (5), 572–585.

Swamy, R.N., Mangat, P.S., 1974. A theory for the flexural strength of steel fiber
reinforced concrete. Cement and Concrete Research 4 (2), 313–325.

Tomar, V., Zhai, J., Zhou, M., 2004. Bounds for element size in a variable stiffness
cohesive finite element model. International Journal for Numerical Methods in
Engineering 61, 1894–1920.

Wang, J.-A.J., Mattus, C.H., Ren, F., 2010. DHS counter improvised explosive device
effects basic research. Geotechnical and Structures Laboratory, Engineering
Research and Development Center, US Army Corps of Engineers.

Xu, X.-P., Needleman, A., 1993. Void nucleation by inclusion debonding in a crystal
matrix. Modelling and Simulation in Materials Science and Engineering 1 (2),
111–132.

Zhai, J., Tomar, V., Zhou, M., 2004. Micromechanical simulation of dynamic fracture
using the cohesive finite element method. Journal of Engineering Materials and
Technology 126, 179–191.

Zhou, Y., 2005. An experiment study of quartz-coesite transition at differential
stress. Chinese Science Bulletin 50 (5), 445–451.

Zhou, X.Q., Kuznetsov, V.A., Hao, H., Waschl, J., 2008. Numerical prediction of
concrete slab response to blast loading. International Journal of Impact
Engineering 35 (10), 1186–1200.


	Microstructure-performance relations of ultra-high-performance concrete  accounting for effect of alpha-quartz-to-coesite silica phase transformation
	1 Introduction
	2 Cohesive finite element model
	3 Constitutive relations
	3.1 Cementitious matrix
	3.2 Quartz aggregate
	3.3 Steel fibers
	3.4 Interfaces
	3.5 Interfacial contact and friction

	4 Results and discussion
	4.1 Effect of phase transformation on load-carrying capacity
	4.2 Effect of phase transformation on energy-dissipation capacity
	4.2.1 Effect of phase transformation on total energy dissipation
	4.2.2 Effect of phase transformation on energy dissipation modes
	4.2.3 Effect of phase transformation on energy dissipated through interface damage and fracture
	4.2.4 Effect of phase transformation on energy dissipated through friction between fractured interfaces
	4.2.5 Effect of phase transformation on energy dissipated through inelastic deformation

	4.3 Microstructure-performance relation maps

	5 Conclusions
	Acknowledgements
	References


