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Abstract
Computational predictions of measures for macroscopic material attributes from the microstructure scale is a fundamental
challenge inmaterials science. Data transfer across scales and physics-basedmodels plays a central role in this highlymaterial-
specific process.Here,wepresent an approach for computationally establishing the probabilistic shock-to-detonation transition
(SDT) threshold or “pop plot” (PP, the relation between run-to-detonation distance and applied pressure) of polymer-bonded
explosives (PBXs) from three-dimensional (3D) simulations. The approach takes respective advantages of multiphysics
Lagrangian and Eulerian modeling frameworks. The combined Lagrangian and Eulerian simulations provide an explicit
account of 3D heterogeneous material microstructure at sizes up to tens of mm, mechanisms for the development of hotspots,
and the coupledmechanical-thermal-chemical-transport processeswhichunderlie the behaviors beingpredicted.Data transfers
in the form of hotspot intensity fields from the Lagrangian simulations to the Eulerian simulations link the two frameworks.
To capture the fundamental nature of the multiphysics processes, the source, and the propagation of the stochastic variations
in material behavior, a 3D statistically equivalent microstructure sample set (SEMSS) is designed and used. The approach
facilitates an efficient quantification of the probabilistic macroscopic detonation thresholds, leading to an analytical expression
for the PP that accounts for both themicrostructure effects and uncertainties. Thematerial systemmodeled tracks the properties
of PBX 9501 and the loading conditions studied involve shock pressure Ps in the range of 11–15 GPa. The results are in good
agreement with available experimental data.

Keywords 3D microstructure · Shock to detonation · Energetic materials · Pop plot

1 Introduction

The class of energetic materials known as high explosives
(HE) are primarily composites of organic energetic crys-
tals and polymeric binders, although other components such
as metal fuel granules and inorganic oxidizer particles can
also be added. These materials are commonly referred to as
polymer-bonded explosives or PBXs. The constituents and
microstructure hierarchy from the atomistic, micro, meso, to
macro scales determine ignition, shock-to-detonation tran-
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sition (SDT), and energy release (Fig. 1) [1]. The relevant
physical and chemical processes require appropriate resolu-
tions for responses at the different spatial and temporal scales.
Different models are used at the requisite scales of interest.
For example, atomistic models and reaction kinetics models
are used at the nanoscale [2]; sub-micro (sub-grain) contin-
uum models accounting for individual or clusters of defects
(i.e., voids/cracks/interfaces) are used at the scale of microns
to tens of microns (μm) [3–6]; microstructure-explicit mod-
els (MEM) are used at the micro-to-mm scales [1, 7]; and
macro continuum models (homogenized) in hydrodynamic
codes are used at the cm-to-m structure scales [8–11]. The
finer-scale models provide input for the coarser-scale mod-
els. Sub-micro models for individual voids or a population
of voids [6, 12, 13] focus on the effects of such geomet-
ric discontinuities that exist within individual constituents
in a microstructure (Fig. 1). Such models do not concern
the effects of heterogeneous material microstructures which
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Fig. 1 Multiscale nature of
structure, performance, and
models of energetic materials
and influences across the scales
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have constituent size scales (e.g., grain size) on the order of
tens to hundreds of microns [14]. The microstructure (some-
times also referred to as the meso) scale concerns material
heterogeneities (grains, binder, metal fuel granules, and inor-
ganic oxidizer particles) on the order of tens to hundreds of
microns. It is at this scale that processing and synthesis have
the most influence on structure and properties. Also at this
scale the sub-micro scale, hotspots from heterogeneous con-
stituent inelasticity, void collapse, and crack/interface sliding
manifest and influence the ignition, reaction, and detona-
tion of the materials. To reach the macroscale “from the
ground up”, it is necessary to fully account for the heteroge-
neous material microstructure. As a result, characterization
and model development at this scale are a primary focus
of material design and engineering. Because the size scale
of the constituents is on the order of hundreds of microns
[14, 15], sufficiently representative samples must be of the
order of mm or tens of mm [7]. As far as we know so far,
with the exception of [16, 17], most such microstructure-
explicit models (MEM) in this regard are two-dimensional
(2D) plane-strain models [1, 3, 18]. These models can be
regarded as based on sections of the true three-dimensional
(3D) microstructures.

Heterogeneities such as constituent variations, interfaces,
voids, cracks, and variability in material processing (e.g.,
batch variations) are important sources of uncertainty or
stochastic variations in behaviors at different scales. The
lack of consideration for microstructure and uncertainties
limits the usefulness of macroscopic models in (a) link-
ing the design, development, and selection of intentionally
structured energetic materials (EM) to real macroscopic
performance (b) transitioning macroscopic analyses from
empiricism to predictive science for real materials and struc-
tures, and (c) quantifying the ranges of EM performance,

components and systems with regard to precision, reliability,
and margin of safety. As a result, there is a need to account
for both the microstructure effects and stochastic variations
in macroscopic energetic behaviors of the materials.

Significant advances have been made in microstructure-
explicit models and computational platforms that use
Lagrangian (L), Eulerian (E), or mixed L/E approaches
[1, 4, 7, 8, 19] which have different focuses. Lagrangian
approaches [1, 7] have the advantage of being able to read-
ily and explicitly track constituents, fracture, friction, and
frictional heating, but are less suited for resolving voids and
extremely severe deformations of transition from condensed
phases to gas phases. As a result, they are more appropriate
for processes leading up to and around the initiation of chem-
ical reaction in energetic materials. Eulerian approaches [3,
4, 8, 20], on the other hand, have the advantages of being
able to explicitly track void collapse, severe flow, jetting, and
SDT, but are less capable of resolving and tracking evolution
of heterogeneous microstructures, fracture, friction, and fric-
tional heating. Consequently, they are more extensively used
for reactions, transition from shock loading to detonation,
and reactive flow. Although arbitrary Lagrangian and Eule-
rian (ALE) codes are available [5, 10, 19, 21, 22], they are
extremely computationally expensive, have so far not been
used for highly heterogeneous materials, and are only practi-
cal for problems at size scales of microns or tens of microns
at most [5, 21, 23].

Here in this paper, we combine Lagrangian and Eule-
rian approaches for coordinated three-dimensional (3D)
microstructure-explicit simulations (MES) to predict the
reaction initiation, reaction propagation, and probabilistic
macroscopic pop plot (PP) of PBXs. The framework is illus-
trated in Fig. 2. The characteristic microstructure size scale
(grain size) is on the order of hundreds of microns. The
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Fig. 2 Framework for integrated
Lagrangian and Eulerian
simulations for predicting the
reaction initiation, reaction
propagation, and probabilistic
pop plot (PP) of heterogeneous
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3D models are 15 mm×3 mm×3 mm in size, provid-
ing sufficient representation of the material microstructure
and allowing the analyses to reach the macroscale. The
Lagrangian part focuses on resolving the microstructure
effects and heating due to the microstructure effects. The
Eulerian part focuses on the initiation and propagation of
reaction, the SDT process, and the characterization of the
PP. The two parts are linked via a hotspot field determined
from the Lagrangian part which embodies the microstruc-
ture effects on dissipation and heating that are responsible for
triggering the heterogeneous ignition and detonation process.
To account for the stochastic variations in material behavior
due to variations at the microstructure level, a statistically
equivalent microstructure sample set (SEMSS) with pre-
scribed statistical microstructure attributes consistent with
those of PBX 9501 is generated and used. The use of the
SEMSS allows probabilistic pop plots to be obtained. The
approach used here lends itself to uncertainty quantification
(UQ) [24–30] to characterize the variations in the macro-
scopic behavior due to variations in material parameters. In
the analysis carried out there, the SEMSS allows the prob-
abilistic SDT threshold and an analytical expression for the
SDT threshold (pop plot or PP) to be developed for the first
time as far as the authors are aware.

This paper is organized as follows. Section 2 describes the
material analyzed and the integratedLagrangian andEulerian
computational framework. Section 3 discusses the simulated
SDTprocess and the predicted pop plots.Aparticular empha-
sis is placed on quantifying the probabilistic nature of SDT
resulting from intrinsic material heterogeneities.

2 Framework of analysis

In this section, first, a brief description of the energetic
materials and underlying micro-structures is presented. Sub-
sequently, sub-models corresponding to the Lagrangian and
Eulerian simulations and the coupling between the simula-
tions are discussed. The computational setup for the SDT
study is also described.

2.1 Material andmicrostructures

Polymer-bonded explosives (PBXs) considered here are het-
erogeneous composites consisting of energetic particles and
a polymer binder. The energetic particles in practical use
include HMX, RDX, TATB, and PETN. Among these, HMX
(Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) holds the
highest energy density, therefore, has drawn intense interest
for several decades [23, 31–33]. HMX-based PBXs include
PBX 9501, which consists of HMX (95 wt%), Estane (2.5
wt%), and a plasticizer (2.5 wt%).

In this study, the microstructures that are computationally
generated have an HMX grain volume fraction of 81% and
a binder volume fraction of 19%. The theoretical volume
fraction of HMX in PBX 9501 is 92.7%. However, lower
HMX volume fractions are observed in actual microstruc-
tures because some HMX particles are too small to be
resolved and are absorbed in the binder, leading to what is
sometimes referred to as the “dirty binder”. For example,
Benson and Conley [34] observed a binder volume fraction
of 26% (and grain volume fraction of 74%) from a micro-
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Fig. 3 Computationally
generated 3D statistically
equivalent microstructure
sample set (SEMSS) with a
grain volume fraction of
η � 0.81, a 3D images of five
instantiations, b HMX grain size
distributions, and c HMX
grain-binder specific surface
area distributions. The error bars
indicate variations among the
samples in the set
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graph of PBX 9501 whose theoretical volume fraction of
a binder is only around 8% (and grain volume fraction of
92%). Mas et al. [35] observed a binder volume fraction of
23% for PBX9501 and reproduced the stress–strain behavior
using an explicit finite element framework. Barua and Zhou
[36] used the microstructures of PBX 9501 with a HMX vol-
ume fraction of 82% in their numerical study and obtained
stress–strain curves that match experimental data. This paper
uses the sameHMXvolume fraction for PBXmicrostructures
and the same numerical framework (cohesive finite element
method) as those used in [1]. Essentially in such analyses,
the effects of the part of HMX absorbed in the binder and
therefore not explicitly resolved can be considered as being
lumped in the constitutive behavior of the binder. So far,
there is a lack of more detailed study on the issue of the
“dirty binder” [14, 34, 35].

TheHMXparticles in PBXmicrostructures typically have
random polygonal shapes [34, 37, 38]. To obtain 3D PBX
microstructures similar to those of experimental specimens,
a library of HMX grains extracted frommicrostructures gen-
erated by 3DVoronoi tessellation is first established, with the
sizes of the grains systematically tabulated. The grains are
then used to compose PBX microstructures with prescribed
grain volume fractions and grain size distributions. This
approach allows large numbers of microstructure samples
with prescribed grain size distributions and other attributes to
be obtained efficiently. In this section and subsequent discus-
sions, we use the term “samples” to indicate computationally
generated microstructures for finite element simulations and
“specimens” to indicate experimentally obtainedmicrostruc-
tures. Five 3D samples with statistically equivalent attributes
but different random distributions of the constituents are gen-
erated and used. Computationally analyzing the behavior of
a statistically equivalent microstructure sample set (SEMSS)

via multiple simulations under the same conditions is the
computational equivalent of carrying out experiments on
multiple specimens of the same material, allowing the sta-
tistical variations and probabilistic distributions of material
behavior to be quantified throughmultiple simulations on the
SEMSS.

To illustrate the random variations in microstructure mor-
phology and the statistical consistency among the multiple
samples in the set, Fig. 3a shows five 3D samples with the
same HMX volume fraction of η � 0.81 and Fig. 3b, c show
the variations in grain size distributions and specific grain
surface area (grain surface to grain volume ratio) distribu-
tions, respectively, among the samples. The grains have an
average size of 207 µm and a monomodal size distribution
with a standard deviation of 60.1 µm. The specific grain-
binder interfaces (surface-to-volume ratios of grains) have
an average of 184 m−1.

2.2 The Lagrangian approach

In the Lagrangian approach, the stress tenor is decomposed
into a hydrostatic part and a deviatoric part, i.e.,

σi j � −Pδi j + σ ′
i j , (1)

where σi j is the Cauchy stress and P is the negative of the
hydrostatic stress (or pressure)

P � −1

3
(σ11 + σ22 + σ33) � −1

3
σi i . (2)

The hydrostatic part of the stress carried by all the con-
stituents can be described by the Birch–Murnaghan or the
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Mie–Grüneisen equations of state [39]. The Cauchy stress is
related to the Kirchhoff stress via

τi j � Jσi j , (3)

where J � det(F) is the Jacobian, with F being the defor-
mation gradient. The deviatoric constitutive behavior of the
grains is described by

τ̂ ′ � L :
(
D′ − D′

p
)
, (4)

where L is the tensor of elastic moduli and τ̂ ′ is the deviatoric
part of the Jaumann rate of the Kirchhoff stress. D′ in Eq. (4)
is the deviatoric part of the rate of deformation D, which can
be decomposed into an elastic part and a viscoplastic part as

D′ � D′
e + D′

p . (5)

In the above relation, D′
p is the viscoplastic part of D′ in

the form of

D′
p � 3 ˙̄ε

2σ̄
τ ′, with σ̄ 2 � 3

2
τ ′ : τ ′. (6)

Here, σ̄ is theMisses equivalent stress, τ ′ is the deviatoric
part of theKirchoff stress, and ˙̄ε is the temperature-dependent
equivalent plastic strain rate which has the form as in Zhou
et al. [40]. The parameters in the viscoplasticity model for
HMX are listed in Table 2 in [1].

The binder in PBX 9501 is Estane. It follows the Gener-
alized Maxwell Model (GMM) [41] in the form of

σ (τ ) �
τ∫

0

2G
(
t − t ′

) ∂εD

∂t ′
dt ′ +

τ∫

0

K0
(
t − t ′

) ∂εH

∂t ′
dt ′,

(7)

where σ is the Cauchy stress, εD and εH are the deviatoric
and hydrostatic portions of the Eulerian strain tensor. Here τ

and t represent physical and reduced times. The bulkmodulus
K0 of the polymer is assumed to be a constant, as in [41, 42].
The shear modulus G has a form of

G(t) � Ge +
n∑

i�1

Gi exp

(
− t

τ ri

)
, (8)

where Ge is the long term modulus when the binder is fully
relaxed.Here, τ ri is the relaxation time of the ithmode, andGi

is the corresponding modulus, which is tabulated in Table 1.
In the present study, viscoplastic dissipation, viscoelastic

dissipation, and heat conduction are the thermal–mechanical
processes affecting the local temperature rise and consequent
hotspot development in the PBX under dynamic loading.

Table 1 Parameters of Prony series for Estane binder in PBX 9501 from
[41]

Frequency (Hz) Gi (MPa) Frequency (Hz) Gi (MPa)

10−6 0.00417 105 2.6182

10−5 0.00741 106 12.882

10−4 0.01585 107 52.481

10−3 0.03802 108 223.87

10−2 0.06761 109 436.52

10−1 0.08913 1010 457.09

1 0.1156 1011 346.74

101 0.1422 1012 251.19

102 0.1622 1013 177.83

103 0.2218 1014 117.49

104 0.4753 1015 75.858

Further development can also include the effects of frac-
ture, frictional contact, and frictional heating within the
microstructure, as in previous 2D simulations [1, 18].

2.3 Lagrangian computational setup

The Lagrangian calculations are performed on the set of five
statistically equivalent microstructure samples described in
Sect. 2.1. The overall size is 15 mm×3 mm×3 mm. The
objective is to characterize the heterogeneous heating result-
ing from microstructure processes and develop a means for
capturing the mechanism that can be used as input data in the
Eulerian calculations of the reaction and shock-to-detonation
transition process. As illustrated in Fig. 4, the lateral (top,
bottom, front, back) boundaries of the sample are confined
such that displacement perpendicular to the surfaces are pre-
vented. Impact loading is effected by applying a constant
normal velocity Up on the left (front) end of the sample.
This configuration emulates the experimental condition of
a piston impacting on a PBX specimen. To achieve overall
consistent high-rate deformation throughout the sample, a
linearly varying longitudinal velocity field is specified ini-
tially and only initially (at t� 0) along the sample length.
Specifically, the magnitude of the initial axial velocity field
has the form u0 � Up · (1 − x/L), where L is the sam-
ple length and x is the initial distance from the impact (left)
end. The imposed particle velocity is in the range of Up�
200–2500 m/s to cover a wide range of strain rate and stress
levels typically seen in calculations and experiments [43–46].
Each sample is subject to loading in this range.

It is important to point out that this configuration does
not exactly reproduce impact loading because of the imposi-
tion of the initial velocity field. This is intentional. Basically,
this treatment creates the condition for subjecting a whole
sample to overall macroscopically (not microstructurally)
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Fig. 4 Configuration of the
computational model for
Lagrangian simulations with
loading, boundary, and initial
conditions shown on a cross
section of the microstructure
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uniaxial strain loading at different strain rates and load inten-
sities, allowing the microstructure-sensitive heterogeneous
deformation and heating to be analyzed and quantified. In
particular, the objective here is to characterize the inelastic
dissipation and heating in the microstructures and obtain a
representation and, more importantly, a measure for the het-
erogeneous heating mechanism that can be used as input in
the Eulerian simulations of the SDT process for the determi-
nation of the pop plot. The specificmeasure used here focuses
on the net effects of all factors on heating and takes the form
of the hotspot intensity field χ(x , y, z) which is defined as

χ � T − Tref
Tmax − Tref

, (9)

where T is temperature and Tmax is the highest tempera-
ture in the microstructure under a given condition. T ref is
a reference temperature, which is taken as the initial tem-
perature (300 K) of the material. The value of χ ranges
from 0 to 1 and represents the relative strengths of heteroge-
neous heating in a microstructure that reflect the aggregate
effects of microstructure, constituent behavior, deforma-
tion/dissipation mechanisms, and loading. As the results in
Sect. 3 will show, this measure is largely invariant with
respect to both time (or stages of deformation of a sample)
and loading (strain rate and stress level as defined by the pis-
ton velocityUp). This invariance suggests that χ can be used
as a measure for the variations in heating or hotspot forma-
tion and potentially used in the homogenized model in the
Eulerian simulations.

2.4 The Eulerian approach

2.4.1 Governing equations

The simulation of SDT in energetic materials such as PBX
can be performed by solving the chemically reacting mul-
tiphysics Euler equations [47]. These equations correspond

to the conservation of mass, momentum, energy, and species
mass in the form of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ρ
∂t + ∇ · (ρu) � 0,
∂ρu
∂t + ∇ · (ρuu) � −∇P ,

∂ρE
∂t + ∇ · (ρE + P)u � 0, and

∂ρλ
∂t + ∇ · (uρλ) � −ω̇,

(10)

where ρ, u, P, E, λ, and ω̇ denote mass density, velocity,
pressure, total energy per unit mass, mass fraction reacted
and the reaction rate, respectively. E is the sum of internal
energy e and kinetic energy, i.e.,

E � e +
u · u
2

. (11)

The internal energy is defined as

e � cvT + λQ, (12)

whereQ is the heat release due to chemical reaction,T is tem-
perature, and cv is the specific heat per unit mass at constant
volume. cv is assumed to be constant and a simplified expres-
sion for the internal energy is used following past studies [6,
20, 47]. The modeling of the reaction rate ω̇ is based on a
shock-pressure dependent Arrhenius-type rate model which
has been used in past studies [48, 49] and is further discussed
below in the chemistry modeling section.

2.4.2 Equations of state (EOS)

A hybridized version of the Mie–Grüneisen (MG) and
Jones–Wilkins–Lee (JWL) equations of state (EOS) is used.
Specifically, MG is used for the reactant and JWL is used
for the product. Such an approach has been used in the past
[50–52]. The MG EOS typically performs reasonably well
for solid energetic materials [47, 53], however, its perfor-
mance tends to deteriorate beyond the detonation wave front
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Table 2 Material parameters in the MG and JWL equations of state for
PBX

ρ0 (kg/m3) Γ s c0 (m/s) cv (J/kg-K) e0 (J/kg)

1732.8 0.76 1.772 2926 1701.6 5.1×105

A (GPa) B (GPa) E0 (GPa) R1 R2 ω

634.7 8.0 0.005 4.2 1.0 0.3

and the reaction zone, particularly, in the expanding gaseous
products region where density attains lower values [53]. In
such regions, the JWL EOS is known to perform better. The
current hybridized approach is similar to that in past studies
[50–52] and accounts for the effects of the EOS for both the
reactants and the products. A brief description of theMG and
the JWL equation of states and the hybridization procedure
is given below.

The pressure from the MG EOS is

PMG � Γ

v
[e − e0] + f (v), (13)

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f (v) � PH
[
1 − Γ

2v (v0 − v)
] − Γ

2v P0(v0 − v),

PH � P0 +
ρ0c0η

(1−sη)2
,

η � 1 − v0
v
, and

v � 1/ρ.

(14)

In the above equations, ν is the specific volume, PH is the
pressure along the Hugoniot, Γ is the Grüneisen gamma, s is
the slope relating the shock speed and the particle velocity,
and c0 is the speed of sound. The pressure from the JWL
EOS is

(15)

P � A

(
1 − ωρ

R1ρ0

)
e− R1ρ0

ρ

+ B

(
1 − ωρ

R2ρ0

)
e− R2ρ0

ρ + ωρ (cvT − E0) ,

where ρ0 and E0 are taken at the CJ point. The parame-
ters corresponding to MG and JWL used are summarized in
Table 2.

The hybridization of the MG and JWL equations of state
is performed using a transition criterion based on the reactant
mass fraction and the local density. Specifically, the mixture
pressure in the simulations is given in terms ofPMG andPJWL

as

P �

⎧
⎪⎪⎨

⎪⎪⎩
λPMG + (1 − λ)

PMG, λ > 0.01 or ρ > 2500 kg/m3;

PJWL, 1000 ≤ ρ ≤ 2500 kg/m3;

PJWL, ρ < 1000 kg/m3.

(16)

The above empirical approach to hybridization allows for
a smooth transition from the MG to the JWL equation of
state. Other functional forms can also be utilized to ensure
such a smooth transition. For the cases considered in the
present study, this approach does not lead to any numerical
instabilities, and therefore, can be considered adequate.

2.4.3 Chemistry model

The reaction-rate model for the PBX employs a pressure-
dependent one-step Arrhenius formulation in the form of

ω̇ � A f (Ps)ρλe− Ea
RT , (17)

where A is the pre-exponential factor, Ea is the activation
energy, R is the gas constant, Ps is the shock pressure, and

f (Ps) � C

(
P0
Ps

)n

. (18)

The values ofA andEa/R are 2.8×1011 s−1 and 17,900K,
respectively, following past studies [54, 55]. ParametersC, n,
and P0 are 60, 12.5 and 12.0 GPa, respectively, as obtained
by calibrating to experimental run-up distance. Such mod-
els for the reaction rate have been used before, such as the
DAGMAR (Direct Analysis Generated-Modified Arrhenius
Rate)model [48, 49]. Typically, one-stepArrhenius reaction-
rate models with temperature dependence only are suitable
for SDT studies for the overall smaller sizes at the meso-
scale level. For simulations at higher scaleswith run distances
on the order of mm, typical of most experiments, pressure-
dependent burn rates are required to produce experimentally
measured pop plots [56]. Here, explicit dependence on pres-
sure is introduced to the one-step Arrhenius model in a
manner similar to that in the DAGMAR model. Such an
approach essentially implies that the pre-exponential factor
in the Arrhenius model depends upon the pressure. This has
been reported previously [57].

2.4.4 Hotspot model

Explicit resolution of the microstructure and small-scale
mechanisms in a 3D simulation tends to be computation-
ally prohibitive. Here, a homogenized approach that allows
the effects of microstructure and lower-scale mechanisms
to be phenomenologically accounted for is developed. In
this otherwise homogenized approach for simulating SDT,
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a mechanistic hotspot model [8, 20] is used to imbue the
effects of unresolved microstructure and small-scale phe-
nomena through the hotspot intensity field discussed earlier.
This approach allows the effects of heterogeneities and dis-
continuities such as constituent variations, interfaces, cracks
and voids on the order of microns or sub-microns (which
can cause ignition at much lower shock strengths [58]) to be
phenomenologically accounted for. The mechanistic hotspot
model used in this study is an extension of the model devel-
oped from the studies of void collapse. A brief discussion
is given below. A complete description with underlying
assumptions and applications can be found elsewhere [8, 20].

Hotspots are essentially local areas of higher temperatures
wheremore intense heating occurs.What is considered “hot”
is relative and primarily a reflection of the local intensity of
heating. In the approach here, the internal energy is given by

e � cvT + Q + λHSQHS, (19)

where λHS denotes the mass fraction of the hotspot. The evo-
lution of λHS is governed by the transport equation

∂ρλHS

∂t
+ ∇ · (uρλHS) � −ω̇HS. (20)

Here, the reaction-rate is expressed as

ω̇HS � χ ZρλHSe
− Pa

P , (21)

where χ(x , y, z) is the hotspot intensity field obtained from
the Lagrangian meso-scale simulation, as defined in Eq. (9).
Since the induction time for the energy deposition is specified
via χ , higher values of χ give rise to faster energy deposi-
tion, reflecting the fact that stronger local dissipation leads to
earlier onset of reaction. This approach is similar to but some-
what different from the original hotspot model described in
[20], where an additional transport equation employing the
induction parameter model [59] is solved to account for the
effects of the induction time, which determines the duration
between the passage of the shock at a hotspot location and
when QHS is fully released. The modified hotspot model is
complete after QHS and χ are specified. Based on the results
of prior analyses, QHS is taken to be ~29 kJ/kg, or approx-
imately 0.25% of Q. This value is lower than used in the
hotspot model in past studies of void collapse [20], where
QHS was about 7% of Q. This is reasonable as voids are not
explicitly tracked here.

2.4.5 Numerical technique

A fully compressible finite volume multi-physics solver,
referred to as LESLIE [60–62], is used. This is a well-
established platform for shock and detonation studies. The

governing equations are spatially discretized using a third-
order MUSCL (Monotonic Upwind Scheme for Conserva-
tion Laws) scheme and solved with the well-established
HLLE (Harten, Lax, van Leer, and Einfeldt) approximate
Riemann solver. TheMUSCL scheme is well-known to yield
accurate solutions for cases where shocks and discontinu-
ities can be observed. The HLLE solver utilizes the integral
form of the system of conservation laws and is a stable and
robust approximate Riemann solver. The time integration
of the spatially discretized equations is performed using a
second-order-accurate predictor–corrector scheme.

2.5 Eulerian Computational Setup

The 3D SDT simulations are performed for a range of shock
pressure (11–15 GPa) to obtain the pop plot. The com-
putational domain is 15 mm×3 mm×3 mm in size and
discretized into 750×150×150 uniform finite volume cells.
Supersonic inflow/outflow boundary conditions are specified
along the longitudinal (x) direction and a free-slip boundary
condition is specified along the transverse (y or z) directions
at the two ends of the domain. A schematic illustration of the
computational setup with the initial hotspot field is shown in
Fig. 5.

3 Results and discussion

In this section, the hotspot intensity fields are first obtained
from the Lagrangian simulations using different samples. As
mentioned before, these fields provide the coupling between
the Lagrangian and the Eulerian models. The discussions
focus on the SDT process in the Eulerian simulations. The
pop plot obtained from the Eulerian simulations is compared
with available experimental and computational data. An ana-
lytical expression for the material-dependent probabilistic
SDT threshold is described.

3.1 Hotspot intensity field

Figure 6 shows the hotspot intensity fields for the five sam-
ples in Fig. 3 under a load intensity of 200 m/s. The hotspot
intensity field for microstructure 1 is shown in Fig. 7a with
the microstructure grain-binder profiles outlined. To reveal
the interior of the field, a sectional view is used. There is
a gravitation of the heating (higher values of the hotspot
intensity) toward grain-binder boundaries, however, intense
heating also occurs inside the grains. This observation in 3D
is in consistent with what has been previously observed in
2D by Wei et al. [18]

The objective of the analysis here is to develop a mea-
sure for the spatial distribution of heterogeneous heating that
reflects the effects of microstructure on heating. Therefore,
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Fig. 5 Schematic illustration of
the 3D computational setup for
the Eulerian calculations

Outflow

Inflow

3 
m

m

Fig. 6 Hotspot intensity field for all the five samples

the characteristics of the hotspot intensity field in different
stages of deformation and at different load intensities are of
interest. For comparison, the distributions of χ(x , y, z) on
the random cross-section at xinit � 4.025 mm at three dif-
ferent times (t � 20, 25, and 30 μs) for Up � 200 m/s are
shown in Fig. 7b–d. The corresponding overall axial strain is
27%, 33%, and 40%. Clearly, the fields are quite similar to
each other in terms of spatial location, variation, and inten-
sity, indicating that χ remains nearly constant over different
stages of deformation. Similarly, the distributions of χ for
different load intensities at Up � 200, 600, and1000m/s
at t � 25, 8, and 5μs respectively (corresponding overall
axial strain is 33%) are shown in Fig. 7c, e, f.

Again, the fields are quite similar to each other, with
only slight increase in the intensity at the higher load levels
(Fig. 7g). The root-mean-square difference among all these
cases is within 17% of the mean. These results show that
the hotspot intensity field χ is largely consistent under dif-
ferent conditions throughout the deformation. Since the field
is dependent on microstructures but is largely invariant with
respect to loading and stage of deformation, it can be used as
a surrogate for microstructure to approximate the aggregate
effects ofmaterial heterogeneities on heating. Such heating is
the mechanism leading to the initiation of chemical reaction
even in an otherwise homogenized setting. In this study, this
surrogate is used in the Eulerianmodel for reaction initiation,
reaction propagation, and SDT.

3.2 SDT Process

Figure 8 shows the distributions of pressure in a sample at
three different times in the SDT process. The load intensity is
Ps � 11 GPa. The passage of the shockwave imparts energy
into the material and causes temperature to increase. Ignition
is observed locally at around 368 ns (Fig. 8a), with the reac-
tion front exhibiting a non-uniform and complex structure in
3D. The ignition occurs at multiple locations, followed by
growth and coalescence. This process leads to the formation
of a detonation front which initially has a complex shape but
rapidly becomes planar (Fig. 8b, c). The planar detonation
front propagates faster than the shock front ahead and even-
tually catches up to the shock front at approximately 495 ns
(Fig. 8c), thereby completing the SDT process. The distance
between the initial impact face and the location of the det-
onation and shock fronts at the moment of SDT completion
(Fig. 8c) is the run-to-detonation distance or the run distance
x∗, which is used as a measure for the macroscopic per-
formance of an energetic material. Since this performance
measure depends on the load intensity Ps, the relationship
between x∗ and Ps on a logarithmic scale in graphical form
is called the pop plot [44], which will be further discussed in
the next subsection.
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Fig. 7 Hotspot locations a in the whole sample and at the cross sec-
tion of xinit � 4.025 mm when b Up � 200 m/s, and t � 20μs,
c Up � 200 m/s, and t � 25μs, d Up � 200 m/s, and t � 30μs,

e Up � 600 m/s, and t � 8μs, f Up � 1000 m/s, and t � 5μs, and
g probability distributions of hotspot intensity fields in (b), (c), (d), (e),
and (f)

The results show that the 3D model based on the heating
intensity from the Lagrangian calculations can capture the
overall heterogeneous nature of the reaction and SDTprocess
of aPBX.To illustrate the statistical variations of the behavior
along different samples, the distributions of pressure for five
samples are shown in Fig. 9 for t � 398 ns.Clearly, there are
significant variations among the samples. It is the variations
and the resulting difference in the run distance x∗ under the
same loading that allow the statistical behavior, in particular,
the statistical scatter in the pop plot, to be quantified.

3.3 Pop plot

Figure 10 shows the pop plot obtained from the 3D simula-
tions using multiple samples over a range of load intensity.
Specifically, the five samples are used at each shock inten-
sity as measured by the input pressure (shock pressure). The
mean, maximum and minimum run-up distances for each
shock pressure are shown by the blue symbols and the error
bars. The uncertainties in the determination of the run dis-
tance are found to be small (~4–5%) due to the well-defined
nature of the planar detonation front at the run distance or
completion of SDT (Fig. 8). Overall, the calculated SDT
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Fig. 8 The SDT process of a sample for Ps � 11 GPa, a at ignition,
b detonation front homogenization and growth behind the shock front,
and c at run-up distance. The corresponding times are 368 ns, 398 ns,
and 495 ns, respectively
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Fig. 9 Distributions of pressure in five samples at t � 398 ns for Ps �
11 GPa

threshold here is in good agreement with the experimentally
and computationally obtained pop plots [43–45, 63] in the
literature.
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Fig. 10 Pop plot obtained from calculations over a range of shock pres-
sure. Theblue circular symbols denote themean run-updistances among
the five samples for each pressure. The error bars denote range of varia-
tion among the five samples in the SEMSS. The blue dotted line denotes
fit of the mean to Eq. (22). The black square symbols represent data
points reported in the literature [43–45, 63]. (Color figure online)

3.4 Analytical form for pop plot and probability
of SDT

The linear relationship between Ps and x∗ in pop plots like
Fig. 10 in logarithmic scales can be represented by

Pm
s x∗

S
� 1, (22)

where x∗ is the run distance to detonation, and S and m are
parameters that are dependent on material and microstruc-
ture. This relation can be used to relate the mean run distance
and the shockpressure. To account for the probabilistic nature
of detonation in the Ps − x∗ space, we introduce another
parameterDwhich we call the pop plot number such that the
above relation is modified to

Pm
s x∗

S
� D. (23)

Here D � 1 corresponds to the mean pop plot relation
in Eq. (22) with a 50% probability of detonation for a given
shock pressure and run distance pair, D > 1 (shifting the line
upward) corresponds to load and distance conditions for SDT
probabilities greater than 50%, and D < 1 (shifting the line
downward) corresponds to conditions for SDT probabilities
less than 50%.Obviously,D quantifies the likelihood of SDT.

Under the assumption that the scatter of data points (and,
therefore, the probability distribution) about the threshold
line at D � 1 is symmetric in Fig. 10 (log–log scale) and can
be described by the normal distribution, it has been shown
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Fig. 11 a SDT probability as a
function of the pop plot number
D, the red solid line indicates fit
of the blue data points to
Eq. (24), and b SDT probability
map in the Ps − x∗ space, as
obtained from the simulation
results
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[1] that the specific form for the probability of detonation
under such conditions is

P (D) � 1

σ
√
2π

D∫

−∞

1

x
exp

[

− (ln x)2

2σ 2

]

dx � 1

2

[
1 + erf

(
ln D√
2σ

)]
,

(24)

where σ is the standard deviation which is obtained by fitting
all the data points in Fig. 11a to Eq. (24). These data points
concern all the samples in the SEMSS for all shock pressures
analyzed in aggregate. Combining Eqs. (23) and (24) yields
a direct relation between the SDT probability P and the
loading condition parameter Ps and the run distance x∗ in
the form of

P (Ps , x
∗) � 1

2
+
1

2
erf

[
1√
2σ

(
ln(Pm

s x∗) − ln S
)]

. (25)

This relation allows the material-dependent SDT proba-
bility map in Fig. 11b to be generated. The relation and the
map enable the prediction of SDT probability for any combi-
nation Ps and x∗ and the establishment of the SDT threshold
(Ps , x∗) corresponding to any given level of probability.

4 Conclusions and comments

The establishment of macroscopic engineering measures
of material performance as functions of microstructure is
a fundamental challenge in material science and mechan-
ics. The task requires explicit resolution of microstructure,
account of relevant physical processes, and quantification
of the stochastic variations in material behaviors arising
from intrinsic microscopic heterogeneities. As a measure for
the performance of energetic materials, the pop plot (PP)
or the relation between shock pressure and run distance
to detonation is intrinsically dependent on the microstruc-
ture of the materials. The prediction of the relation requires
tracking of coupled mechanical-thermal-chemical and trans-

port processes as well as microstructure. The task requires
capabilities that are not readily available in one single com-
putational approach.

In this paper, a computational framework integrating sim-
ulations based on a 3DLagrangian computational framework
(CODEX) and simulations based on an Eulerian compu-
tational framework (LESLIE) is developed. The aim is to
predict the popplot for a class of energeticmaterials knownas
PBXs with account of the underlying multiphysics processes
and the effects of microstructure. While the Lagrangian
part focuses on the thermal–mechanical processes, explicit
resolution of microstructure, and deformation and heating
leading to development of hotspots, the Eulerian part focuses
on tracking the initiation/propagation of reaction, shock-to-
detonation transition (SDT), and calculation of the pop plot.
The two parts are linked through data transfer in the form
of a hotspot intensity field or heating intensity field (HIF).
This is made possible and justified by the observation that
the scaled temperature field leading up to initiation of reac-
tion (referred to as the hotspot intensity field or the heating
intensity field) is largely invariant with respect to the stages
of deformation and load intensity. The implication of this
fact is that the heating characteristics of a PBX reflect the
aggregate microstructure, material, and loading effects and
therefore can be used as a surrogate for explicitly resolved
microstructures in the Eulerian simulations of the reaction
and SDT process. In the framework developed here, the HIF
affects the reaction rate as the onset and progression of reac-
tion depend on the heating rate due to thermal–mechanical
dissipation under loading. Since this is a first attempt in such
a framework, it is arguable as to if this treatment may be
overly simplified or if better treatments can be found. Fur-
ther exploration is certainly warranted. Future developments
can include, for example, explicit resolution of voids, cracks,
and crack-face friction.

This framework is used to obtain the pop plot of a PBX
that echoes the microstructure and constituent attributes of
PBX 9501. The calculated results are in agreement with the
experimental and computational results reported in the liter-
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ature. A set of statistically equivalent microstructure sample
set (SEMSS) is generated and used in the simulations. The
method is the computational equivalent of using multiple
specimens in experiments to establish the statistical distribu-
tion of measured material properties. The use of the SEMSS
over a range of loading conditions not only establishes a
means for quantifying the statistical variations in the SDT
behavior (pop plot) of the material analyzed, but also lead to
the development of a probabilistic formula

(
Pm
s x∗/S � D

)

for predicting (1) the probability of detonation completion
at any given combination of shock pressure and run dis-
tance, and (2) the threshold relation between shock pressure
and run distance for any level of SDT probability. Although
the results in this paper concern only a specific material
system (PBX) and one material setting (volume fraction),
ultimately, future analyses for other materials, microstruc-
tures, and constituent settings can allow the parameters in the
analytical formula developed to be established as functions
ofmicrostructure andmaterial properties. Such functions can
then be used to characterize and analyze the behaviors of
different materials. Further, trends and mechanisms can be
identified to provide guidance for the synthesis of new mate-
rials with desired attributes not yet available, which is a task
of material design. It is also useful to note that the SEMSS-
based simulations can generate large numbers of datasets
with the intertwining effects of many different factors which
can be interdependent. As such, neural network (NN) based
machining learning (ML) tools andmethods [64, 65] can play
an important role in delineating and quantifying the relations
and influences embodied in the datasets. Furthermore, the
framework naturally lends itself to uncertainty quantifica-
tion (UQ) [24–30]. This is an emerging area that is worth
exploring in the near future.

It is helpful to put the current approach in perspective.
First, the domain size in the Lagrangian and Eulerian calcu-
lations are identical. As such, the approach can be regarded as
only a homogenization step in connecting the microstructure
scale and the macroscopic response scale. This is made pos-
sible by the fact that the sample size is in the mm scale which
is greater than the range of run distances studied and much
larger than the characteristic size scale of the microstructure.
If issues involving larger sizes (e.g., hundreds or thousands
of mm) are to be analyzed, an upscaling step is necessary
and can be undertaken to avoid the 3D calculations to be
prohibitively expensive. Such a step is not attempted here
and remains to be pursued in the future. Second, the chem-
ical kinetics model used here is homogenized and requires
independent calibration for the specific material composi-
tion or constituent volume fractions. This can be regarded as
a limitation. To consider other compositions or constituent
volume fraction levels, separate calibration will be required.
It remains to be seen how this limitation can be alleviated.

Further development is desired for this new approach which
is still in its early form.

Finally, we note that although PBXs with coupled
mechanical-thermal-chemical-transport processes are the
material system of focus here, the approach proposed can be
used for materials with other underlying physical or multi-
physical processes. Examples include materials whose com-
bined thermal, mechanical, chemical, and piezo-electrical
properties are of interest.
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