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Fracture toughness of a composite material is not a deterministic property. This is primarily due to the
stochastic nature of its microstructure as well as the activation of different fracture mechanisms during
the crack-microstructure interactions. Although Weibull distribution has been widely used to determine
the probability of material fracture, its role has been confined to fitting fracture toughness data rather
than providing predictive insight of material fracture toughness and the magnitude of scatter. Besides,
the Weibull parameters which are obtained through curve fitting carry little physical significance. In this
paper, an analytical model is developed to predict fracture toughness in a statistical sense. The Weibull
distribution parameters are correlated with the statistical measures of microstructure characteristics and
the statistical characterization of the competition between crack deflection and crack penetration at
matrix/reinforcement interfaces. Although the quantification is specific to Al2O3/TiB2 composites, the
approach and model developed here can be applied to other materials. The established correlations will
lead to more reliable material design.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

One of the biggest challenges in material sensitive design is to
predict the variation of key material properties such as strength
and fracture toughness. It has been proved that the stochastic nat-
ure of microstructure is the primary reason for fracture toughness
scatter [1–3]. The crack interactions with microstructure can result
in different failure mechanisms which ultimately determine the
variation of fracture toughness [4,5]. Most of the existing proba-
bilistic models for fracture toughness prediction only consider near
crack-tip stress states [6–8]. Information regarding microstructure
characteristics and failure mechanisms associated with the crack
propagation process is not explicitly included in the model formu-
lations. This is due to the fact that the material heterogeneities at
the microstructure level and the interaction of a propagating crack
with phases in a microstructure are hard to quantify. Both of them
are very random and complicated. Li and Zhou [5] developed a
semi-empirical model which allows fracture toughness of Al2O3/
TiB2 ceramic composites to be predicted. Although this quantifica-
tion lends itself to the establishment of relations between the sta-
tistical attributes of microstructure, fracture mechanism and the
fracture toughness of the material, the material fracture toughness
is predicted in an average sense from the CFEM (Cohesive Finite
Element Method) simulations in Li and Zhou [2]. Based on the pre-
vious work, a modified analytical model is introduced which
allows the possible range of fracture toughness values to be pre-
dicted as function of microstructure. The Weibull distribution
parameters are directly correlated to the two-point correlation
functions as well as the quantification of fracture mechanisms.
These relations can be used for material reliability design by con-
trolling the fracture toughness scatter through microstructure
tailoring.
2. Determination of fracture mechanism during crack-
microstructure interactions

For Al2O3/TiB2 ceramic composites, a crack can propagate into
Al2O3 matrix, TiB2 reinforcements or along the interface in
between. Our attention is primarily focused on the last two scenar-
ios because they are the two competiting fracture mechanisms
when a crack interacts with reinforcements. He and Hutchinson
[9,10] first proposed an energy based criterion which quantifies
the competition between crack deflection and crack penetration
when a semi-infinite crack is perpendicular to an infinite planar
interface. This criterion is only valid for isotropic bi-material which
is symmetrically loaded. Gupta et al. [11,12] extended He and
Hutchinson’s work to anisotropic materials and developed a stress
based criterion to determine the activation of the two competiting
fracture mechanisms. Their results were validated through laser
spallation experiments. Later on, Martínez and Gupta [13] further
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Nomenclature

Ei Young’s modulus (i = 0 or 1)
E effective Young’s modulus of the composite material
f volume fraction of reinforcements
Um;Uin;Up surface energy of matrix cracking, interface debond-

ing and particle cracking
Hm;Hin;Hp fractions of matrix cracking, interface debonding and

particle cracking
KIC fracture toughness
K0 normalization factor
m shape parameter
lm ; lp crack length associated with interface debonding and

particle cracking during single crack-particle interaction
li shear modulus (i = 0 or 1)

Pij two-point correlation functions (i = 0 or 1; j = 0 or 1)
Pf probability of fracture
R particle radius
U parameter in determining the competition between

crack deflection and crack penetration
Uf total fracture energy released
v i Poisson’s ratio (i = 0 or 1)
�v effective Poisson’s ratio of the composite material
x crack interaction angle
x0 critical crack angle for crack deflection and crack pene-

tration transition
W total projected crack length

Y. Li, M. Zhou / Computational Materials Science 116 (2016) 44–51 45
improve the criterion so that both single deflection and double
deflection at the interface are considered. This criterion uses
quasi-static approximation by assuming crack deflection only
occurs under constant loading. Although the above work provides
sound theoretical basis for quantifying the competition between
crack deflection and crack penetration, these criteria cannot be
directly applied to analyze real composite materials. First of all,
the reinforcements in real composite materials have finite size.
Therefore, the interface cannot be considered as infinite. Besides,
it has been proved that the shape of reinforcements also influence
the activation of different fracture mechanisms. The shape of rein-
forcements needs to be quantified and included in the criterion as
well.

Based on the previous work, Li and Zhou [5] further extend He
and Hutchinson’s criterion by including the effects of finite rein-
forcement size, reinforcement shape and distribution in a two-
phase composite material. The criterion is parameterized by

U ¼ 1� b2

a0ð1� aÞ jcj2 þ jhj2 þ 2ReðchÞ
h i

�qa1e
a2
sð Þ �Uin

Up
; ð1Þ

to determine the activation of the two competing failure mecha-
nisms. Specifically, interface debonding, which is activated by crack
deflection, is predicted when U > 0. Otherwise, crack penetration
induced reinforcement cracking will be activated instead. In the
above relation, �q is the roundness of the reinforcement. s represents
the characteristic reinforcement size. Uin and Up are the surface
energies of the interface and reinforcement, respectively. For the
Al2O3/TiB2 ceramic composite material considered in this study,
Uin and Up are taken as 78.5 J/m2 and 102.2 J/m2, respectively.
Although the surface energy of matrix Um is not included in Eq.
(1), Um = 21.5 J/m2 is used for the rest of the study. c and h are coef-
ficients which depend on the crack interaction angle x as shown in
Fig. 1(a). The derivation of c and h as well as other parameters in Eq.
(1) are discussed in detail in Li and Zhou [5].

To simplify the problem, we consider circular TiB2 reinforce-
ment particles in the microstructure. �q and s in Eq. (1) are reduced
to 1 and 2R, respectively. Here, R is the particle radius. Fig. 1(a)
illustrates the evolution of U as x varies at R = 30 lm.
0 6 x 6 p=2 is considered in the formulation. x0 is defined as
the critical crack angle which signifies the transition from crack
penetration to crack deflection. Fig. 1(b) compares the U evolution
under different particle sizes. It is noted thatx ¼ 0� is the most dif-
ficult scenario for crack deflection. When the crack gradually devi-
ates from the center plane as x increases, U increases and create a
more favorable condition for crack deflection. It is also observed
that the activation of crack deflection is independent of x when
the particle size is sufficiently small. As shown in Fig. 1(b), the cal-
culated U value from Eq. (1) is always above zero when R = 10 lm.
As R increases, x0 increases accordingly and creates a more
demanding requirement for crack deflection. Therefore, large par-
ticle is more susceptible to crack penetration. The conclusions pre-
dicted above reflect the trends reported in other studies [4,14,15].

It should be noted that the work above only considers single
crack-particle interaction. In real crack propagation problems, the
crack can have multiple interactions with the particles, which adds
extra complexity to the problem. Even for the single crack-particle
interaction, different crack paths are activated as x changes. Since
the choice ofx is random, the prediction of upper bound and lower
bound of fracture toughness needs to consider all the possible x
values. As shown in Fig. 2, lin and lp represent the crack length
for interface debonding and particle cracking under single crack-
particle interaction, respectively. lin and lp are calculated as

lin ¼ ðp� 2xÞR; if U > 0;
lp ¼ 2R cosðxÞ; if U 6 0:

�
ð2Þ

As illustrated in Fig. 2, interface debonding is the only fracture
mechanism being activated when R = 10 lm. The maximum crack
length is reached at x ¼ 0�. The same trend is observed when
R = 200 lm with particle cracking as the only failure mechanism.
The above scenarios represent two extreme cases when the parti-
cle size is either very small or very large. When the particle size is
in between (for example, when R = 20 lm and 30 lm), the maxi-
mum crack length is obtained at x0 which is also the point where
a fracture mode changes from interface debonding to particle
cracking.

As discussed earlier, Eq. (2) only applies to single crack-particle
interaction. For multiple crack-particle interactions, it is necessary
to statistically parameterize the probability of crack encounter
with the particle phase. In this paper, two-point correlation func-
tions are employed for this task. The purpose of using two-point
correlation functions is two-fold. First of all, these functions have
been proved to be effective for microstructure characterization
and generation [2,16,17]. Mathematically, the four two-point cor-
relation functions Pij ði; j ¼ 0 or 1Þ measure the probability of find-
ing a given combination of phases over given distance. Since
P00 + P01 + P10 + P11 = 1, only three of the four two-point correlation
functions are independent. For example, P11 quantifies the proba-
bility to randomly locate both the starting point and ending point
in phase 1. It is a function of D which is the distance between the
two points. In this study, phase 0 and phase 1 represent matrix and
reinforcement, respectively. It can be inferred that both the start-
ing point and ending point will overlap with each other when
D = 0. P11 at D = 0 is equivalent to the probability of finding the
reinforcement phase over the entire microstructure region, which
is actually the volume fraction f as shown in Fig. 3. When D?1,
the starting point and ending points are not correlated any more.



Fig. 1. (a) Criterion U as determination of crack penetration and crack deflection at a matrix/particle interface; (b) U as a function of crack interaction angle x for different
particle sizes.

Fig. 2. Schematic illustration of single crack-particle interaction for different particle sizes.

Fig. 3. Two-point correlation functions for two-phase microstructure with
R ¼ 40 lm and f = 15%.
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P11 starts to approach f2, which is the product of locating the start-
ing point and ending point in phase 1 independently. In addition to
volume fraction f, the size information of circular reinforcement
can be explicitly extracted from two-point correlation functions.
The microstructure illustrated in Fig. 3 has randomly distributed
uniform circular particles with R = 40 lm and volume fraction
f = 15%. It can be found that each two-point correlation curve has
a peak/dip. The distance D = 80 lm which corresponds to the
peak/dip is essentially the particle diameter. The above quantifica-
tions of two-point correlation functions can be directly used to
generate microstructural samples with independently varying geo-
metric characteristics [18].
Two-point correlation functions also provide a means to statis-
tically parameterize the probability of crack interactions with ran-
domly distributed particles in the microstructure. For example,
P01(D) quantifies the probability of a crack which is initially in
the matrix phase 0 to encounter the reinforcement phase 1 within
propagation distance D. As shown in Fig. 3, P01 reaches a plateau
with the magnitude of [1 � f2 � (1 � f)2]/2 beyond a certain dis-
tance Dcha. Dcha � 100 lm is the characteristic length of the given
microstructure. This indicates that the crack-particle interactions
only depend on the volume fraction of the particles if the crack
propagation is longer than the characteristic length of the
microstructure. Otherwise, the effect of particle size and morphol-
ogy need to be considered.

Based on the trend and boundary conditions of each two-point
correlation curve, a generalized two-point correlation functions
can be formulated as

P11 ¼ ðf � f 2Þe�ðD=2RÞ þ f 2;

P00 ¼ ð1� f Þ � ð1� f Þ2
h i

e�ðD=2RÞ þ ð1� f Þ2; and

P01 ¼ P10 ¼ ð1� P11 � P00Þ=2:

8>><
>>: ð3Þ

These formulations will be used to estimate the crack length
associated with each fracture mechanism during the failure
process.

As shown in Fig. 4, Lin, Lm and Lp represent the crack length asso-
ciated with interface debonding, matrix cracking and particle
cracking, respectively. The total crack length L is a sum of Lin, Lm
and Lp. W denotes the projection length of the entire crack trajec-
tory. Based on the physical implications of two-point correlations
functions, Lin, Lp and Lm can be calculated as



Fig. 4. Schematic illustration of crack lengths associated with different mechanisms
in two-phase composite materials.
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LinðxÞ ¼
R Dc

0
P01ðDÞdx
D � NðR; f Þ � lin;

LpðxÞ ¼
R Dc

0
P01ðDÞdx
D þ

R Dc

0
P11ðDÞdx
D

 !
� NðR; f Þ � lp; and

LmðxÞ ¼ L� LinðxÞ � LpðxÞ:

8>>>>><
>>>>>:

ð4Þ

Here, N is the total number of particles in the microstructure. N
depends on the particle size scale and the volume fraction. For
the microstructure configurations with non-overlapping circular
particles, N can be calculated as 2f �W2/pR2. The distance Dc

employed in the integrals is taken as 800 lm. As discussed previ-
ously, Dc ¼ 800 lm is larger than the characteristic length of the
microstructures considered in this study. The crack propagation
length is sufficiently long to represent the crack-particle interac-
tions during the failure process. To fully understand the physical
meaning of the formulations in Eq. (4), we take Lin as an example.
The total crack length of interfacial debonding over a distance Dc

is the product of (i) the cumulative probability of the crack encoun-
tering the particle over Dc, (ii) the total number of particles N in the
microstructure, as well as (iii) the crack length of interface debond-
ing under single crack-particle interaction lin. Lp and Lm are formu-
lated by following the same reasoning. In order to make these
quantifications dimensionless, Lin, Lp and Lm are normalized by the
total crack length L as

Hin ¼ Lin=L;

Hp ¼ Lp=L; and
Hm ¼ Lm=L:

8><
>: ð5Þ

Hin; Hp and Hm represent the proportions of crack lengths associ-
ated with interface debonding, particle cracking and matrix crack-
ing, respectively.

3. Fracture toughness prediction

For brittle materials, the fracture toughness KIC is related to the
energy release rate JIC as

KIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JIC

E
1� �m2

s
; ð6Þ

where E and �m are the effective Young’s modulus and effective Pois-
son’s ratio of the heterogeneous material, respectively. E and �m are
estimated by using the Mori-Tanaka method as

E ¼ 9K �l
3Kþ�l

and

�m ¼ 3K�2�l
6Kþ2�l

;

8><
>: ð7Þ

where K and �l are effective bulk and shear moduli. K and �l are cal-
culated according to
K ¼ K0 þ f ðK1�K0Þð3K0þ4l0Þ
3K1þ4l0

and

�l ¼ l0 þ 5fl0ðl1�l0Þð3K0þ4l0Þ
3K0ð3l0þ2l1Þþ4l0ð2l0þ3l1Þ :

8<
: ð8Þ

Here, Kr and lr represent the bulk and shear modulus, respectively
for Al2O3 (r = 0) and TiB2 (r = 1).

For brittle materials, the total energy released will be com-
pletely used to form new crack surfaces. For a crack path involving
different types of fracture sites as illustrated in Fig. 4, JIC can be sta-
ted as

JIC ¼ @Uf

@A � UinLinþUmLmþUpLpð Þt
Wt

¼ L
W Uin

Lin
L þUm

Lm
L þUp

Lp
L

� �
¼ nðR; f Þ UinHin þUmHm þUpHp

� �
;

ð9Þ

where Uf is the total energy released. A =Wt is the total projected
crack surface area with W and t being the crack projection length
and specimen thickness, respectively. n = L/W is a function which
captures the tortuosity of the entire crack path. Based on the
microstructure configuration discussed in Section 2, n depends on
the R and f. Hin, Hm and Hp are calculated directly through Eqs. (4)
and (5).

It should be noted that the formulations developed in Eq. (9)
only applies to quasistatic crack growth for which crack speed
approaches zero. It does not account for dynamic fracture induced
crack branching, oscillation or micro-cracking. It is assumed that
the crack propagation in each single phase always follows a
straight path without deflection. For example, the total cracking
length L predicted from Eq. (4) is equivalent to the projected length
W when f = 0 or 1. Based on the assumptions, Eq. (9) underesti-
mates the fracture toughness when dynamic crack propagation is
considered. The determination of dynamic fracture toughness
requires formulation of dynamic energy release rate as function
of crack tip speed and dynamic failure mechanisms involved
[19–21]. This part is not considered in this paper but will be
included in future publications.

4. Probabilistic fracture toughness analysis

In most of the existing probabilistic models, the fracture tough-
ness data is first obtained from experiment and then fitted by Wei-
bull distribution function [22–24]. A typical two-parameter
Weibull distribution function is in the form of

Pf ¼ 1� exp � K
K0

� 	m
 �
: ð10Þ

Here Pf is the probability of fracture. K and K0 are the fracture tough-
ness KIC measured from experiments and the normalization factor,
respectively. m is defined as the shape parameter. The parameters
m and K0 are obtained through a linear regression fit to N data
points of K. In order to have a good statistical representation of
the stochastic fracture process, N P 20 is preferred.

The problem of the most existing probabilistic models is that
they do not allow the scatter of fracture toughness data to be pre-
dicted prior to the experimental testing. Without the material sen-
sitivity information, it is hard to determine the number of tests
required to obtain a good estimate of probability of material
fracture.

Although Weibull parameters in Eq. (10) are fitting parameters
which carry little physical significance, their correlations with
microstructure characteristics and fracture mechanisms can pro-
vide valuable insight to material sensitive design without doing
repeated experimental testing. Although experiments can be
employed to establish the quantitative relations, these approaches
are usually very expensive and time consuming. Besides, experi-
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ments are limited to specific material systems. They are not flexi-
ble enough to predict the uncertainties of fracture toughness for
arbitrary materials, especially materials which are not available
now but might be fabricated in the future.

In the following discussions, the K values in Eq. (10) are calcu-
lated using the analytical model developed in Sections 2 and 3.
Microstructures with non-overlapping circular reinforcements
are considered. Fig. 5 compares the probability of fracture Pf for
microstructures with systematically varying particle radius
(R ¼ 20 lm;30 lm and 40 lm) and volume fraction (f = 10%, 15%,
20% and 25%). It is observed that microstructures with smaller
radius tend to have higher fracture toughness and lower probabil-
ity of fracture for all the volume fractions considered. The same
trend is observed from the CFEM (Cohesive Finite Element Method)
calculations [5] in Fig. 6, where 20 microstructures with same com-
bination of R and f are considered in the analysis. As show in Fig. 5,
when f is kept as a constant, the slope of fracture probability curve
becomes steeper as R increases, leading to less fracture toughness
scatter. The opposite trend is observed when R is fixed while f is
increased from 10% to 25%. This indicates that microstructures
with fine particles and high volume fractions will have higher-
order uncertainties due to the large fracture toughness variation.
However, it should be noted that this type of combination also
yield higher level fracture toughness values at the same time. This
trend has been reported in a few research studies [14,15,25]. From
the microstructure design perspective, it is not surprising that
shifting up the fracture toughness values will lead to larger scatter
band. First of all, composites materials are toughened through
crack-particle interactions. Generally speaking, more interactions
during the crack propagation process will lead to higher fracture
resistance. If a crack does not encounter any reinforcement, the
choice of crack path is very limited. The fracture toughness of the
composite material is very close to the fracture toughness of
matrix material which is considered as the lower bound fracture
toughness. Besides, more crack-particle interactions can be created
by increasing the volume fraction of particles. As discussed previ-
ously, the effective toughening mechanism during crack-particle
interaction is crack deflection induced interface debonding. This
requires fine particles in addition to high volume fraction. Crack
deflection, which contributes to enhancing the level of fracture
toughness, also provides the crack with more opportunities in
choosing the path. It can be inferred from Fig. 2 that the choice
of different arc length leads to larger fracture toughness scatter.
The scatter is intensified when more crack-particle interactions
are included. This explains why microstructure configurations
which lead to higher level of fracture toughness also have larger
fracture toughness scatter.

It is also noted that the fracture toughness values predicted
from Eqs. (6) and (9) is larger than the values predicted from CFEM
results. In Fig. 5, the range of KIC values predicted from the analyt-
ical model is approximately from 2:7 MPa

ffiffiffiffiffi
m

p
to 8:4 MPa

ffiffiffiffiffi
m

p
. In

contrast, the range of KIC values predicted from CFEM calculations
only spans from 2:7 MPa

ffiffiffiffiffi
m

p
to 4:7 MPa

ffiffiffiffiffi
m

p
as shown in Fig. 6.

With lower bound KIC predictions being consistent, the analytical
model predicts a much higher upper bound value. This is because
the two-point correlation functions employed in the analytical
model quantify the possibility of crack-particle interactions in
the entire microstructure region. However, the crack propagation
in CFEM simulations is primarily localized in a small region near
the pre-crack plane as illustrated in Fig. 7. The crack does not have
the opportunity to interact with particles which are far away from
the pre-crack plane. To quantitatively understand how localization
of crack propagation influences the level of fracture toughness and
the magnitude of scatter, another set of calculations are carried out
by considering the interactions of particles within the local region
of each microstructure instantiation employed in CFEM calcula-
tions. The local region is symmetric with the pre-crack plane with
a height of 60 lm as show in Fig. 7.

Fracture toughness scatter is quantified by the shape parameter
m. It can be inferred from Eq. (10) that if the magnitude of the scat-
ter is large, then m is small and vice versa. Specially, m?1 is
expected if there is no scatter. Theoretically, it can be achieved only
when f = 0 or f = 1 as the microstructure is purely matrix phase or
reinforcement phase.

Fig. 8 compares m values predicted from the analytical model
and CFEM framework. The solid lines and dashed lines represent
analytical solutions with the entire microstructure and local
microstructure region, respectively. CFEM results are illustrated
by dots. Microstructures considered here have volume fraction f
ranging from 0% to 30%. Three particle sizes with
R ¼ 20 lm; R ¼ 30 lm and R ¼ 40 lm are employed and repre-
sented by blue, red and black color, respectively. As demonstrated
in Fig. 8, a much higher level of m values are predicted for analyt-
ical solutions considering the local microstructure region. This
means that there is smaller fracture toughness scatter when the
crack only propagates in the localized microstructure region. It
makes sense that a lower level of m values are predicted when
the entire microstructure region is considered since the interac-
tions of crack with all the particles in the microstructure region
are included. From microstructure design prospective, m values
predicted by considering the entire microstructure region are very
conservative since the crack-particle interaction is usually local-
ized when the reinforcements are well bonded with the matrix.
Therefore, analysis with local and entire microstructure region
can serve as the upper limit and lower limit of m as represented
by dashed and solid lines, respectively. Despite discrepancies in
m, both predictions share the same trends. First of all, the increase
of volume fraction f leads to decreasedm. The larger scatter of frac-
ture toughness is observed due to more intensified crack-particle
interactions during crack propagation. The decrease of R can have
the same effect as small particles promote interface debonding
and create more uncertainties in choosing the crack path. It is
noted that the CFEM predictions of m all fall between the upper
and lower bound with the similar trends as observed from the ana-
lytical predictions. It is also observed that the CFEM predictions are
closer to the upper bound m as f increases. When f = 25%,m values
predicted from CFEM calculations are very close to the upper
bound prediction especially when particle size is small. It can be
inferred that the crack-particle interactions in local microstructure
region is representative of the entire microstructure region when
reinforcements with small size and large volume fractions are con-
sidered. As shown in Fig. 8, the discrepancy between the lower
bound curves and upper bound curves becomes smaller with
increasing f and decreasing R. Once f increases to 100% and R
decreases to 0, both the upper and lower bound curves will satu-
rate to m?1 as the microstructure becomes pure reinforcement
phase. This means m will not continue to decrease as f increases.
After f reaches a critical value, the trend reverses. Although the
critical f cannot be predicted because the analytical model devel-
oped here only considers non-overlapping circular reinforcements,
the trends observed from the above analysis are still valid for most
engineering cases.

Fig. 9 summarizes the scatter of Hin and Hp under different par-
ticle size and volume fraction, and compares them with the scatter
of fracture toughness m. Hin, Hp and m are all predicted from the
analytical model considering the local microstructure region. The
solid black line in each sub-figure connects the average value of
Hin or Hp under each volume fraction. It is noted that the scatter
of fracture toughness primarily comes of the scatter of Hin. The
increase in volume fraction f and decrease in particle size R can



Fig. 5. Fracture probability distribution predicted from analytical model for microstructures with randomly distributed non-overlapping circular particles.

Fig. 6. Fracture probability distribution predicted from CFEM simulations [2] for microstructures with randomly distributed non-overlapping circular particles.

Fig. 7. Scheme of local region for crack propagation observed in CFEM simulations
[2].

Fig. 8. Effect of microstructure attributes on m predicted from CFEM model and
analytical model considering the entire and local microstructure region,
respectively.
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lead to higher average Hin and higher Hin as well. Compared with
Hin, Hp is less sensitive to R and f. The increase in volume fraction
f and particle size R has limited effect on the average value of Hp

and its scattering.



Fig. 9. Effect of proportions of interface debonding Hin and particle cracking Hp on m under different values of particle size and volume fraction.
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In conclusion, the most effective way to improve the fracture
toughness of two-phase composite material is to increase crack
tortuosity by promoting interface debonding. This can be achieved
by introducing refined second-phase reinforcements with ade-
quate volume fraction. It should be noted that the decrease in rein-
forcement size and increase in volume fraction also enhance the
sensitivity of the material system as larger fracture toughness scat-
ter is observed at the same time. The analytical model developed
here provide a way to estimate the upper and lower limit of frac-
ture toughness by considering microstructure attributes and frac-
ture mechanisms involved in the failure process. The prediction
of Weibull parameter m as shown in Fig. 8 can be employed as a
reference of fracture toughness scatter for material sensitive
design of two-phase composite materials.
5. Summary

An analytical model is developed to predict the scatter of frac-
ture toughness of two-phase composite material Al2O3/TiB2 as
functions of microstructure attributes and fracture mechanisms
involved during the failure process. The Weibull parameter m,
which quantifies the scatter of fracture toughness is quantitatively
correlated to the geometric attributes of the microstructure as well
as the proportion of interface debonding and particle cracking
associated with the entire crack path. It is found that increase of
interface debonding can result in higher fracture toughness. This
fracture mechanism can be promoted by decreasing the reinforce-
ment size and increasing its volume fraction in the dilute situation
(f < 35%). Although this type of microstructure tailoring can lead to
improved fracture toughness, the material system becomes more
sensitive as a larger fracture toughness scatter is observed. The
upper and lower bound of fracture toughness scatter predicted
here can provide insight to selection of materials and microstruc-
ture tailoring without doing repeated testing.
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