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The deformation of [0001]-oriented ZnO nanorods with hexagonal cross sections under uniaxial
tensile loading is analyzed through molecular statistical thermodynamics (MST) simulations. The
focus is on the size dependence of mechanical behavior in ZnO nanorods with diameters ranging
from 1.95 to 17.5 nm. An irreversible phase transformation from the wurtzite (P6;mc space group)
structure to a tetragonal structure (P4,/mnm space group) occurs during the tensile loading process.
Young’s modulus before the transformation demonstrates a size dependence consistent with what is
observed in experiments. A stronger size dependence of response is seen after the transformation
and is attributed to the polycrystalline nature of the transformed structure. A comparison of the MST
and molecular dynamics (MD) methods shows that MST is 60 times faster than MD and yields

results consistent with the results of MD. © 2010 American Institute of Physics.

[doi:10.1063/1.3277053]

I. INTRODUCTION

Microstructure and phase transformation significantly af-
fect the mechanical, thermal, phonic, electric, and magnetic
properties of materials. Phase transformations can lead to
significant changes in material behavior, giving rise to
mechanisms for property enhancement and design of new
devices. So far, six structures of ZnO have been reported,
including wurtzite (WZ) (P63mc space group),’ zincblend
(ZB),? rocksalt (RS), a layered structure (LY),* a hexagonal
structure (HX) (Ref. 5), and a tetragonal structure (originally
referred to as a body-centered-tetragonal structure with four-
atom rings or BCT-4).°® WZ is the most stable and com-
monly observed phase at ambient conditions. ZB can be ob-
tained only on cubic surfaces of certain crystals under
specific growth conditions. The other four structures can be
obtained via phase transformations from WZ under different
loading conditions.”” Since WZ is the only structure show-
ing piezoelectricity and has been used to fabricate
nanogenerators,9 understanding the mechanisms and condi-
tions of the transformations leading to the other structures is
essential in the design of devices as the loss of piezoelectric-
ity due to phase transformations can render devices inoper-
able.

A number of numerical techniques is available for cal-
culating the physical properties of nanomaterials and each
has its own advantages and disadvantages. Ab initio calcula-
tions based on, for example, the density functional theory
(DFT) require no empirical input but are impractical for size
scales of real devices. MD simulations can deal with size
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scales larger than those for DFT and are now routinely used
in many applications, but they are associated with very short
time scales. Furthermore, consideration of macroscopic equi-
librium (or quasistatic) conditions within the MD framework
can be computationally intensive. While molecular statics
considers equilibrium, it is only applicable at 0 K. Along this
line, various frameworks have been developed recently. For
instance, the quasicontinuum method'” imbues atomistic
characteristics to finite element (FE) based continuum analy-
ses. It is much less computationally intensive compared to
MD and can deal with larger size scales, but it does not
explicitly account for the discrete atomistic structure of ma-
terials. This method has recently been extended to finite
temperatures.” Approacheslzf15 that couple FE regions and
MD regions can deal with size scales up to microns, but
mismatches between the FE and MD regions lead to issues
such as ghost forces and reflections. The molecular statistical
thermodynamics (MST) method recently developed based on
statistical thermodynamics and quantum mechanics'®™"® is a
method for analyzing macroscopic equilibrium (macroscopic
“quasistatic”) processes at finite temperatures. It is an atom-
istic framework which allows explicit account for molecular
structures of materials and can significantly reduce computa-
tional time compared to MD. Similarities and differences
between MD and MST are listed in Table 1.

Our previous MD simulations”® have shown that a meta-
stable tetragonal phase can exist in [0001]-oriented ZnO na-
norods under uniaxial tensile loading. Due to the computa-
tional time-intensive nature of MD for approximating
macroscopic equilibrium conditions, only sizes up to 4.55
nm have been analyzed. Here, we combine both MD and
MST simulations to analyze the deformation at 300 K of
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Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


http://dx.doi.org/10.1063/1.3277053
http://dx.doi.org/10.1063/1.3277053
http://dx.doi.org/10.1063/1.3277053

023512-2 Wang et al.

TABLE 1. Similarities and differences between MD and MST.
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MD

MST

Similarities

Differences
(1) Governing equation

(2) Independent variables Time step (¢)

Atomic positions (r;)

(3) Algorithm

Newton’s equation of motion

Finite difference solution of Newton’s equation of motion

Atomistic or molecular potential

Atomic or molecule mass

Minimization of Helmholtz free energy
Boltzmann constant (k)
Average atomic positions (T;)
Planck constant (/)
Numerical minimization of Helmholtz free energy

such rods with lateral dimensions between 1.95 and 17.5 nm.
The benefit is the two methods can mutually reinforce each
other and allow a large size range to be analyzed. Since the
largest size (17.5 nm) in our simulation corresponds to the
smallest size of ZnO nanorods tested in experiments,19 these
computed results provide a reference for analyzing the size
dependence of Young’s modulus. Additionally, the MST
methods also allow the minimal energy states associated with
the phase transformation to be explicitly evaluated.

Il. COMPUTATIONAL FRAMEWORK

The ZnO nanorods analyzed have hexagonal cross sec-
tions and the single crystalline WZ structure. The rod axis

coincides with the [0001] crystalline direction and six {0110}
crystalline planes constitute the lateral surfaces, as illustrated
in Fig. 1. Five different lateral sizes (1.95, 3.25, 4.55, 9.75,
and 17.5 nm) are considered, all with the same length of 14.6
nm. The lattice constants for the WZ structure are a
=3.25 A, c=5.21 10%, and u=0.386." Here, u=u./c denotes
the relative offset between Zn and O basal planes along the
[0001] orientation. The nanorods are generated by repeating

a WZ unit cell along the [0001], [0110], and [2110] orien-
tations. The supercell concept is used. Specifically, periodic
boundary conditions are applied in the [0001] direction to
approximate an infinitely long rod, and a vacuum of 3.0 nm
is imposed outside the lateral surfaces to keep them traction-
free. The temperature is maintained at 300 K. For direct
comparison, numerical and geometrical conditions for the
MST analysis here are taken to be the same as those in our
previous MD simulations,7 except that the MST calculations
also concern the two additional sizes of 9.75 and 17.5 nm, in
addition to the sizes of 1.95, 3.25, and 4.55 nm analyzed
before.

(a) [0001] (b)

[2110]
FIG. 1. (Color online) (a) Unit WZ cell, (b) ZnO nanorod with lateral
dimension (d) of 1.95 nm and length (/) of 14.6 nm.

A. The MST method

In statistical physics, a solid at finite temperature can be
regarded as an ensemble of atomic oscillators whose Helm-
holtz free energy can be expressed as a function of the oscil-
lation frequencies. The core of MST is the particle-oscillator
duality.”’18 In the analyses of mechanical deformation, the
macroscopic statistical equilibrium positions of the atoms are
used. On the other hand, when the Helmholtz free energy of
the system is calculated, the thermal oscillations of the atoms
are in focus. From the macroscopic perspective, statistically
equilibrium (quasistatic) deformation is associated with the
equilibrium configuration of the system which can be ob-
tained by minimizing the Helmholtz free energy with respect
to the statistical equilibrium positions of the atoms under the
constraint of applied loading. The link between the oscilla-
tory frequencies and the equilibrium positions of atoms can
be deduced via the dynamical matrix D of the atoms.” Spe-
cifically, for a system with N atoms at volume V and tem-

perature 7, the Helmholtz free energy F can be written
18,21,22
as

N 3
b
F=®+kTS D 11{2 sinh(—wﬂﬂ. (1)
j=1 a=1 2kT

Here, ® is the total interatomic potential, k is the Boltzmann
constant, w; is the frequency of atom j, & is the ath coordi-
nate, and # is the reduced Plank constant. The second term
on the right hand side in Eq. (1) accounts for the contribution
of temperature and thermal motions of the atoms to the free
energy. For ®, a Buckingham-type pair potential for ZnO in

the form of

q —r.\ C
D= {%+A exp(-r“)——ﬁ} (2)
i#j L Tij p Tij

is used. This is the same potential as that used in our MD
simulations.”® In the above relation, rij is the distance be-
tween ions 7 and j, g; is the charge on ion i and A, and p and
C are parameters”’24 whose values are listed in Table II. The
first term of this potential represents long-range Coulomb
electrostatic interactions and the last two terms represent
short-range covalent interactions. It has been shown that this
potential accurately captures the equilibrium energy, elastic
constants, surface properties, and lattice constants for all ex-
isting polymorphs of Zn0.%%**% This is important for the
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TABLE II. Short-range potential parameters for ZnO (Ref. 23).

A p C
Species (eV) (A) (eV A
07 -0* 9547.96 0.21916 32.0
Zn**-0* 529.70 0.3581 0.0
Zn**—7Zn** 0.0 0.0 0.0

simulation of phase transformations in nanorods with high
surface-to-volume ratios.

In the classical approximation (Aw<<kT), Eq. (1) can be
rewritten as

N 3 ﬁ
w.
Fz¢+kT221n<—ﬂ>, (3)
j=1 a=1 kT

where the frequencies of oscillation for the atoms are the 3N
eigenvalues which can be obtained from the diagonalization

of the dynamical matrix D 171821 51 the form of
1 PP
Dif = h(—) 4)
\rmimj (?rm J r]B

In the above expression, m; is the mass of atom i and r;, is
the ath coordinate of atom i.

When N is large, the diagonalization is extremely diffi-
cult. To strike a balance between accuracy and efficiency like
those in Refs. 16—18, 21, and 22 we adopt the local harmonic
approximation by rewriting Eq. (3) as

N
hD 1/6
F~®+3kTY, ln%, (5)

i=1

where D; is the determinant of the local dynamical matrix of
atom i. The statistical equilibrium configurations under the
conditions of macroscopic quasistatic deformation and asso-
ciated thermomechanical quantities can be obtained by mini-
mizing this Helmholtz free energy. Mathematically, this en-
tails setting the derivatives of F with respect to r;, at fixed
temperature and boundary loading to zero, i.e.,

M 1A AD)

+ =0, i=1,...,N,
Iriq 2|Di| Irig

a=1,2,3.  (6)

In the MST algorithm used here, the deformation is strain
controlled and the analysis is carried out at fixed levels of
boundary displacement. The progression of deformation is
achieved through displacement increments which correspond
to a nominal strain increment of 0.25% during loading
(—=0.25% during unloading). This procedure is repeated until
failure occurs for loading or the rod is fully unloaded for
unloading.

B. Microstructure analysis

The microtructures of the ZnO nanorods are analyzed
using the radial distribution function (RDF),
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FIG. 2. (Color online) Stress-strain curves for the 1.95 nm nanorod. The
black curve is obtained from MD simulation and the red line is from MST
calculation, the blue curves are for unloading obtained using MST. The
coincidence of the loading and unloading paths indicates elasticity without
structural change.

B n(r,r+ dr)/]l’

g(r) Ve v

, (7)

where n is the number of atoms in a spherical shell with
thickness dr, r is the distance from the atom at origin, Vg is
the volume of the spherical shell, and N and V are the total
number of atoms and total volume of the sample, respec-
tively. Peaks of RDF represent the ratio of the radial density
of atoms at distance r to the mean density of atoms. The
dominant lattice parameters (a, b, and c) of different struc-
tures can be identified from the positions of their correspond-
ing peaks. The widths of the peaks are related to the devia-
tions of atomic positions from the dominant lattice distances.

lll. RESULTS AND DISCUSSIONS

A. Phase transformation from WZ to tetragonal
structure

As illustrated in Fig. 2, the results of MST simulation
show three-stage stress-strain relations which are similar to
that obtained from the previous MD simulations.” The par-
ticular rod size analyzed in the figure is 1.95 nm. The first
stage (A—B) corresponds to the elastic stretching of the
WZ-structured rod up to a strain of &,=9.25% with a char-
acteristic stress 0,=27.5 GPa. This is the critical stress re-
quired for the nucleation of a new tetragonal phase in the
rod. This phase is previously referred to as a body-centered-
tetragonal structure with four-atom rings (BCT-4) and be-
longs to the P42/mnm space group.7’8 Further loading leads
to a precipitous drop in stress (B— C), indicating the pro-
gression of the structural transformation from WZ to the te-
tragonal structure. It should be pointed out that, strictly
speaking, this new crystalline structure is not body-centered-
tetragonal. Rather, the space group P42/mnm is fully tetrag-
onal, with primitive cell parameters a=b and a=L=y=90°.
The parameters for the Wyckoff positions of zinc and oxygen
atoms are identical. The lattice would be body-centered-
tetragonal (space group I4/mmm) if all atoms are of the
same species. A description of how the transformation occurs
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FIG. 3. (Color online) Stress-strain curves from MST simulations for dif-
ferent cross-sectional diameters between 1.95 and 17.5 nm.

has been given in Ref. 7. Similar tetragonal structures have

been reported for BeO,26 c:arbon,27 and lithium aluminum
- 3.28

oxide.

B. Size dependence

Since rod sizes smaller than 4.55 nm have been analyzed
through MD simulations in previous works,”® the focus here
is on sizes larger than 4.55 nm which cannot be easily ana-
lyzed by MD due to prohibitively large central processing
unit (CPU) requirements. Figure 3 shows the stress-strain
curves for five sizes between 1.95 and 17.5 nm from MST
simulations. A significant dependence of behavior on size is
seen. The critical stress required to initiate the transformation
(0,) decreases by 39.3% from 27.5 to 16.7 GPa as the size
increases from 1.95 to 17.5 nm. The failure stress (o) shows
an even stronger dependence on size, decreasing 66.5% from
28.2 to 9.44 GPa over the same size range [see Fig. 4(a)].
The Young’s modulus of WZ-structured rods (Ey,) decreases
30% from 310 to 217 GPa and the Young’s modulus of the
tetragonal-structured (TS) rods (E;) decreases 70.6% from
250 to 73.5 GPa as the lateral dimension increases from 1.95
to 17.5 nm [see Fig. 4(b)].

This size dependence of Young’s modulus in ZnO nano-
rods with WZ structure revealed by MST simulations is com-
pared with that observed in experiments.19 Since the smallest
diameter of nanorods tested experimentally is limited to
about 17 nm, the MST results here just provide the Young’s
modulus for nanorods below this size. The Young’s modulus
from both MST results and experimental tests'? as a function
of nanorod diameter is plotted in Fig. 5. For the largest
sample in the MST simulations (which is the smallest size
tested in experiments), the calculated Young’s modulus is
217 GPa, in good agreement with the experimentally mea-
sured value of 221 GPa. A core-shell model was proposed19
to explain this size dependence by considering the surface
effects. However this model does not work for the MST
results, because the assumption of uniform modulus for the
structure in the core and shell regions in the model is not
suitable for nanorods with lateral diameter less than 20 nm.”

The stress-strain curves after the phase transformation
show an even stronger size dependence (see Fig. 3). Both the
failure stress (o) and the slopes of the curves decrease sig-
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FIG. 4. (Color online) (a) Critical stresses for nucleation of phase transfor-
mation and failure as functions of wire size. (b) Young’s modulus as a
function of wire size.

nificantly as the size increases. This is primarily attributed to
the fact that the tetragonal structure after the transform is
polycrystalline in nature and grains of different sizes and
orientations exist, as seen on the cross sections with different
lateral sizes in Fig. 6. The orientations of grains with the
transformed tetragonal structure are denoted by the [001] di-
rection (normal to the four-atom rings) of the tetragonal
structure.”® A ring is regarded as belonging to a grain only if
it is at the geometric center of eight other first neighbor

N7 T T T
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MST results
280 | Experimental results ]
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£ ™ —-— Experimental mudulus for bulk ZnO
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» 240 | " -
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FIG. 5. (Color online) Variation of Young’s modulus with wire diameter
(Ref. 19) (the dash-dotted line denotes the experimentally reported bulk
value of about 140 GPa).
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(-] Non-tetragonal structure
© O O Tetragonal Grain with Various Orientation

FIG. 6. (Color online) Cross-sectional view of rod structures immediately
after the phase transformation. Atoms in red are either surface atoms or
interior atoms not belonging to the tetragonal structure. Other colors denote
tetragonal grains with different [001] orientations.

rings. At the smallest size (1.95 nm), the whole rod trans-
forms from the WZ to the tetragonal phase immediately after
the transition strain (g,) and further loading reveals only the
behavior of the pure tetragonal structure. At larger rod sizes,
the transformation occurs gradually in different regions. At
any subsequent strain (e.g., 11.5% of the 17.5 nm rod in Fig.
6), there are both WZ- and tetragonal-structured regions in
rods larger than 1.95 nm, with the tetragonal-structured
grains showing different sizes and orientations. Continued
deformation of the rods occurs through the nucleation of new
tetragonal regions as well the reorientation, growth, and coa-
lescence of existing tetragonal-structured grains.

C. Comparison of the results from MST and MD

The lattice parameters for the two phases obtained from
MST, MD, and DFT calculations are listed in Table III. The
results from MST are consistent with those from MD and
DFT,® with only minor errors of less than 3%.

Overall, the MST and MD simulations yielded results
with similar features, including the phase transformation, av-
erage properties (such as Young’s modulus and unloading

J. Appl. Phys. 107, 023512 (2010)

TABLE IV. A comparison of results from MST and MD.

(1) Three-stage stress-strain relation and elastic
unloading

(2) Transformation from WZ to tetragonal structure
under tensile loading

Similarities

(3) Consistent lattice parameters for WZ and tetragonal
structures (errors <1% between MST and DFT and
<3% between MST and MD)

(4) Consistent Young’s modulus values (see Fig. 4)

(5) Consistent size effect trend predictions: as size
increases, critical stresses for phase transformation,
tensile strength and Young’s modulus decrease

(1) Critical stress for phase transformation in MST is
over 25% greater than that in MD

(2) Tensile strength in MST shows various differences
compared to that in MD (see Fig. 4)

(3) The efficiency of MST is almost 60 times that of MD

Differences

behavior), and size effect trend (as shown in Fig. 4 and Table
IV). This consistency of tendency lends credence to the MST
method and results. However, there are some differences in
the MST and MD results for critical quantities such as the
stress for phase transformation o, and strength o;. For ex-
ample, the onset of both o, and o, obtained from MST lags
behind that predicted by MD (Fig. 2). A look at the basics of
the two methods helps understand the difference. In MD, the
thermal motions of atoms play a key role in overcoming the
energy barriers to phase transformations. After each loading
or unloading increment, the nanorod must be relaxed for a
considerable period to allow a statistical equilibrium state to
be reached and time-averaged values for quantities such as
stress, energy, and temperature to be extracted. In MST, on
the other hand, the preferred configuration of the atomistic
system is obtained via the minimization of the Helmholtz
free energy. The values extracted are spatially and tempo-
rarily averaged macroscopic equilibrium values. Either stable
or metastable states can be reached and the contributions of
thermal motions of atoms are accounted for only through a
phenomenological characterization of their thermal energies
in aggregate as oscillators. Therefore, MST may yield locally
metastable states as well as global stable states, whereas MD
is more likely to identify lowest energy, globally stable equi-
librium states through explicit account of all possible paths
and modes of atomic motions. Because of this reason, MST
simulations tend to yield an upper bound to the critical stress
of phase transformation, as seen in Fig. 2.

To ascertain the stability of the atomic configuration ob-
tained by MST after the phase transformation, MD calcula-

TABLE III. Lattice parameters of WZ and tetragonal structures.

a b c

(&) (A) (A) bla cla

WZ, point A in Fig. 2 MST 3.26 5.61 5.18 1.72 1.59
MD 3.25 5.65 5.20 1.73 1.60

DFT 3.20 5.55 5.13 1.73 1.60

Tetragonal structure, point F in Fig. 2 MST 3.18 5.52 5.53 1.74 1.74
MD 3.26 5.66 5.62 1.74 1.69

DFT 3.17 5.48 5.48 1.73 1.73
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FIG. 7. A comparison of CPU time consumption by MD and MST. At the
44th load step, phase transformation occurs, causing MST to require more
computations to find the minimum free energy state.

tions are carried out for the 9.75 and 17.5 nm rods near the
critical point for transformation initiation. Specifically, con-
figurations of these rods at a strain of 6.5% are first obtained
from MST calculations and relaxed. At this strain level, the
rods are still fully WZ-structured. Subsequently, MD loading
up to a strain of 9.0% is carried out to achieve full transfor-
mation in the rods. Figure 6 shows the configurations upon
transformation completion obtained from MST and MD. The
3.25 and 4.55 nm rods are not shown due to space limitation.
In general, fewer surface atoms are involved in the WZ-to-
tetragonal structure transformation in the MD results than in
the MST results. This can be seen from rods of all sizes
shown. Also, the MD calculations yielded larger tetragonal
grains than MST. This can be explained by the fact that MD
better captures the more stable/lower energy structures of
materials than MST. In contract, MST leads more to meta-
stable structures along the paths to the more stable states
with the lowest free energies. Overall, however, the MD and
MST calculations show consistent results in that both dem-
onstrate the same WZ-tetragonal structure transformation
and lead to polycrystalline structures with WZ and tetragonal
grains with different orientations. Furthermore, both show
the same trend of the grains becoming more evenly distrib-
uted as the rod size increases.

The computational efficiencies of MST and MD are also
compared. Figure 7 shows the CPU time requirements of
MST and MD for calculations for a 1.95 nm rod using 32
processors on an Itanium® 2 based parallel cluster. Obvi-
ously, MST is approximately 60 times faster than MD for the
same problem, suggesting its advantages for large problems
under quasistatic loading conditions at finite temperatures.
Furthermore, it is conceivable that a combination of MST
and cluster statistical thermodynamics (CST)'®'® may allow
a range of problems with sizes up to microns to be analyzed
in the near future.

IV. CONCLUSIONS

The MST method, a numerical technique for macro-
scopic quasistatic conditions at finite temperatures, has been
used to analyze the deformation of ZnO nanowires with the
[0001]-growth orientation under tensile loading. The wires

J. Appl. Phys. 107, 023512 (2010)

analyzed have lateral dimensions ranging from 1.95 to 17.5
nm. The size dependence of Young’s modulus before the
WZ-to-tetragonal structure transformation is in general good
agreement with that observed in experiments. The distribu-
tions of tetragonal-structured grains in larger (from 3.25 to
17.5 nm) transformed nanorods lead to more gradual in-
creases in stress with strain as the size increases. The mecha-
nism leading to this involves the nucleation, growth, defor-
mation, and movement of tetragonal-structured grains and
interactions between grains and defects. A comparison of the
MST and MD methods shows that the MST method yields
results qualitatively and quantitatively consistent with the re-
sults from MD simulations. In particular, the MST frame-
work is shown to be capable of identifying the WZ-to-
tetragonal phase transformation originally predicted by MD
and DFT calculations. The numerical differences between
results of MST and MD indicate that the phenomenological
nature of MST in quantifying the thermal motions of atoms
may affect and limit its identification of all possible routes to
equilibrium states, especially in regard to phase transforma-
tions and failure. One advantage of MST is that it can be up
to 60 times faster than MD in calculations, therefore, poten-
tially allowing material systems with larger size scales to be
analyzed.
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